Abdbeam: Composites Cross Section Analysis - Documentation¶
Abdbeam is a python package for the cross section analysis of thin-walled composite material beams of any shape.

These are a few things you can do with Abdbeam:
- Use a fast thin-walled anisotropic composite beam theory including closed cells, open branches, shear connectors and booms [1];
- Recover replacement stiffnesses (EA, EIyy, EIzz, EIyz, GJ) and/or a full 4 x 4 stiffness matrix for beams with arbitrary layups and shapes;
- Recover centroid and shear center locations;
- Obtain internal load distributions (Nx, Nxy, Mx, My, Mxy for segments; Px and Tx for booms) for a large number of cross section load cases (defined by Px, My, Mz, Tz, Vy and Vz section loads);
- Plot cross sections, their properties and internal loads.
Contents¶
Installation¶
Windows and UNIX (MacOS/Linux)¶
Abdbeam is installed with all its dependencies using PyPI (Python package index)::
pip install abdbeam
Dependencies¶
Dependecies are taken care by the PyPI intallation and are listed here for reference purposes only:
Creating Sections¶
When creating your own arbitrary sections, pay attention to the following modeling rules:
- No floating segments;
- No floating points;
- No segments crossing each other;
- No coincident or partially overlapping segments;
- Unique integer ids for materials, segments and points.
The best place to start creating your own sections is referring to the Abdbeam applications found in the Examples page.
Examples¶
This page shows application examples with open sections, sections with branches, closed sections, multi-cells, booms and shear connectors. You can also locate these examples as individual modules in the abdbeam.examples
package.
Contents¶
Kollár/Springer C-Section Example¶
Open sections are the simplest and most common beam type. In this C-Section example from ref. [1], we calculate, print and plot section properties, create a load case with a vertical shear of 100N and plot its Nxy internal loads. Units for this problem are: m, N and Pa:
import abdbeam as ab
sc = ab.Section()
# Create a materials dictionary:
mts = dict()
mts[1] = ab.Laminate()
mts[1].ply_materials[1] = ab.PlyMaterial(0.0001, 148e9, 9.65e9, 4.55e9,
0.3)
mts[1].ply_materials[2] = ab.PlyMaterial(0.0002, 16.39e9, 16.39e9,
38.19e9, 0.801)
mts[1].plies = [[0,2], [0,2], [0,1], [0,1],
[0,1], [0,1], [0,1], [0,1]]
mts[1].symmetry = 'S'
# Create a points dictionary based on Y and Z point coordinates:
pts = dict()
pts[1] = ab.Point(0.0, 0.0)
pts[2] = ab.Point(0.049, 0.0)
pts[3] = ab.Point(0.049, 0.062)
pts[4] = ab.Point(0.0, 0.062)
# Create a segments dictionary referencing point and material ids:
sgs = dict()
sgs[1] = ab.Segment(1,2,1)
sgs[2] = ab.Segment(2,3,1)
sgs[3] = ab.Segment(3,4,1)
# Point the dictionaries to the section
sc.materials = mts
sc.points = pts
sc.segments = sgs
# Calculate and output section properties
sc.calculate_properties()
sc.summary()
ab.plot_section(sc, figsize=(6.4*0.8, 4.8*0.8))
# Create a single load case and calculate its internal loads
sc.loads[1] = ab.Load(Vz_s=-100)
sc.calculate_internal_loads()
# Plot internal loads
ab.plot_section_loads(sc, 1, int_load_list=['Nxy'],
title_list=['Abdbeam - Nxy (N/m)'],
figsize=(6.4*0.8, 4.8*0.8))
Which prints:
Section Summary
===============
Number of points: 4
Number of segments: 3
Number of cells: 0
Centroid
--------
yc = 3.39937500e-02
zc = 3.10000000e-02
Shear Center
------------
ys = 6.92284048e-02
zs = 3.10000000e-02
Replacement Stiffnesses
-----------------------
EA = 3.08687460e+07
EIyy = 2.20044020e+04
EIzz = 8.18260398e+03
EIyz = 3.72546093e-12
GJ = 1.31941376e+01
EImax = 2.20044020e+04
EImin = 8.18260398e+03
Angle = -1.54432286e-14
[P_c] - Beam Stiffness Matrix at the Centroid
---------------------------------------------
[[ 3.08687460e+07 2.87672843e-10 -1.44055909e-10 0.00000000e+00]
[ 2.87672843e-10 2.20044020e+04 3.72546093e-12 0.00000000e+00]
[ 1.45837431e-10 5.47177645e-12 8.18260398e+03 0.00000000e+00]
[ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.31941376e+01]]
[W_c] - Beam Compliance Matrix at the Centroid
----------------------------------------------
[[ 3.23952259e-08 -4.23516474e-22 5.70322567e-22 0.00000000e+00]
[-4.23516474e-22 4.54454522e-05 -2.06908775e-20 0.00000000e+00]
[-5.77375679e-22 -3.03897581e-20 1.22210485e-04 0.00000000e+00]
[ 0.00000000e+00 0.00000000e+00 0.00000000e+00 7.57912363e-02]]
[P] - Beam Stiffness Matrix at the Origin
-----------------------------------------
[[3.08687460e+07 9.56931125e+05 1.04934443e+06 0.00000000e+00]
[9.56931125e+05 5.16692669e+04 3.25296774e+04 0.00000000e+00]
[1.04934443e+06 3.25296774e+04 4.38537563e+04 0.00000000e+00]
[0.00000000e+00 0.00000000e+00 0.00000000e+00 1.31941376e+01]]
[W] - Beam Compliance Matrix at the Origin
------------------------------------------
[[ 2.17291691e-07 -1.40880902e-06 -4.15439267e-06 0.00000000e+00]
[-1.40880902e-06 4.54454522e-05 -2.06908775e-20 0.00000000e+00]
[-4.15439267e-06 -3.03897581e-20 1.22210485e-04 0.00000000e+00]
[ 0.00000000e+00 0.00000000e+00 0.00000000e+00 7.57912363e-02]]
And plots:


Back to Contents.
Megson’s Closed Section with Branches Example¶
Megson’s book (ref [2]) example 19.1 is dedicated to calculating the shear flow distribution for a beam combining open and closed section elements. Units for this problem are: mm, N and MPa.
We start creating the section and calculating its properties:
import abdbeam as ab
sc = ab.Section()
# Create a dictionary for the isotropic material
mts = dict()
mts[1] = ab.Isotropic(2, 70000, 0.3)
# Create a points dictionary based on Y and Z point coordinates
pts = dict()
pts[1] = ab.Point(0,-200)
pts[2] = ab.Point(-100,-200)
pts[3] = ab.Point(-100,0)
pts[4] = ab.Point(-200,0)
pts[5] = ab.Point(-200,-100)
pts[6] = ab.Point(0,0)
pts[7] = ab.Point(100,-200)
pts[8] = ab.Point(100,0)
pts[9] = ab.Point(200,0)
pts[10] = ab.Point(200,-100)
# Create a segments dictionary referencing point and material ids
sgs = dict()
sgs[1] = ab.Segment(1,2,1)
sgs[2] = ab.Segment(2,3,1)
sgs[3] = ab.Segment(3,4,1)
sgs[4] = ab.Segment(4,5,1)
sgs[5] = ab.Segment(3,6,1)
sgs[6] = ab.Segment(1,7,1)
sgs[7] = ab.Segment(7,8,1)
sgs[8] = ab.Segment(8,9,1)
sgs[9] = ab.Segment(9,10,1)
sgs[10] = ab.Segment(8,6,1)
# Point the dictionaries to the section
sc.materials = mts
sc.points = pts
sc.segments = sgs
# Calculate section properties
sc.calculate_properties()
Next, we are going to plot the section showing its segments’ orientations, as they are essential to understand shear signs:
# Plot the section
ab.plot_section(sc, segment_coord=True, title='Abdbeam - Megson Example')

Abdbeam by default plots positive diagrams towards the top side of the laminate and negative diagrams towards the bottom side. To change individual diagram directions, the parameter diagram_factor_list can be used with factors 1.0 or -1.0 as desired. This is also a rather large cross section with thin laminates, so ploting a countour inside the thickness will be hardly visible. To provide a clearer internal load view, we’ll use a contour diagram:
#Create load case and calculate its internal loads:
sc.loads[1] = ab.Load(Vz_s=100000)
sc.calculate_internal_loads()
ab.plot_section_loads(sc, 1, segment_contour=False, diagram=True,
diagram_contour=True, diagram_alpha=1.0,
contour_levels=20, contour_color='coolwarm',
diagram_factor_list=[1,1,-1,-1,1,-1,-1,1,1,-1],
thickness=False, int_load_list=['Nxy'],
title_list=['Nxy (N/mm)'])

Back to Contents.
Kollár/Springer Single Cell Example¶
In this single rectangular cell example from ref. [1], the laminate is asymmetric. This requires special attention when defining the point connectivity of each segment, so that the bottom and top plies are at their intended sides. We’ll calculate, print and plot section properties, create a load case with combined external loads and plot its Nx and Nxy internal loads in a single plot. Units for this problem are: m, N and Pa:
import abdbeam as ab
sc = ab.Section()
# Create a materials dictionary:
mts = dict()
mts[1] = ab.Laminate()
mts[1].ply_materials[1] = ab.PlyMaterial(0.0001, 148e9, 9.65e9, 4.55e9,
0.3)
mts[1].ply_materials[2] = ab.PlyMaterial(0.0002, 16.39e9, 16.39e9,
38.19e9, 0.801)
mts[1].plies = [[0,1]]*10 + [[45,1]]*10
mts[1].symmetry = 'T'
# Create a points dictionary based on Y and Z point coordinates:
pts = dict()
pts[1] = ab.Point(-0.025, -0.035)
pts[2] = ab.Point(0.025, -0.035)
pts[3] = ab.Point(0.025, 0.035)
pts[4] = ab.Point(-0.025, 0.035)
# Create a segments dictionary referencing point and material ids:
sgs = dict()
sgs[1] = ab.Segment(1,2,1)
sgs[2] = ab.Segment(2,3,1)
sgs[3] = ab.Segment(3,4,1)
sgs[4] = ab.Segment(4,1,1)
# Point the dictionaries to the section
sc.materials = mts
sc.points = pts
sc.segments = sgs
# Calculate and output section properties
sc.calculate_properties()
sc.summary()
ab.plot_section(sc, segment_coord=True, figsize=(6.4*0.8, 4.8*0.8))
# Create a single load case and calculate its internal loads
sc.loads[1] = ab.Load(Px=200, Mz=10, Vz_s=-100)
sc.calculate_internal_loads()
# Plot internal loads
ab.plot_section_loads(sc, 1, int_load_list=['Nx', 'Nxy'],
title_list=['Abdbeam - Nx (N/m)',
'Abdbeam - Nxy (N/m)'], figsize=(6.4*0.8, 4.8*0.8))
Which prints:
Section Summary
===============
Number of points: 4
Number of segments: 4
Number of cells: 1
Centroid
--------
yc = 0.00000000e+00
zc = 0.00000000e+00
Shear Center
------------
ys = -8.67361738e-19
zs = -3.46944695e-19
Replacement Stiffnesses
-----------------------
EA = 3.99342118e+07
EIyy = 2.94941190e+04
EIzz = 1.79757984e+04
EIyz = 0.00000000e+00
GJ = 4.10520186e+03
EImax = 2.94941190e+04
EImin = 1.79757984e+04
Angle = -0.00000000e+00
[P_c] - Beam Stiffness Matrix at the Centroid
---------------------------------------------
[[ 3.99342118e+07 -0.00000000e+00 -0.00000000e+00 6.75301020e+04]
[ 0.00000000e+00 2.94941190e+04 0.00000000e+00 0.00000000e+00]
[ 0.00000000e+00 0.00000000e+00 1.79757984e+04 0.00000000e+00]
[ 6.75301020e+04 0.00000000e+00 0.00000000e+00 4.10520186e+03]]
[W_c] - Beam Compliance Matrix at the Centroid
----------------------------------------------
[[ 2.57576953e-08 0.00000000e+00 0.00000000e+00 -4.23711147e-07]
[ 0.00000000e+00 3.39050642e-05 0.00000000e+00 0.00000000e+00]
[ 0.00000000e+00 0.00000000e+00 5.56303524e-05 0.00000000e+00]
[-4.23711147e-07 0.00000000e+00 0.00000000e+00 2.50563381e-04]]
[P] - Beam Stiffness Matrix at the Origin
-----------------------------------------
[[ 3.99342118e+07 -0.00000000e+00 -0.00000000e+00 6.75301020e+04]
[ 0.00000000e+00 2.94941190e+04 0.00000000e+00 0.00000000e+00]
[ 0.00000000e+00 0.00000000e+00 1.79757984e+04 0.00000000e+00]
[ 6.75301020e+04 0.00000000e+00 0.00000000e+00 4.10520186e+03]]
[W] - Beam Compliance Matrix at the Origin
------------------------------------------
[[ 2.57576953e-08 0.00000000e+00 0.00000000e+00 -4.23711147e-07]
[ 0.00000000e+00 3.39050642e-05 0.00000000e+00 0.00000000e+00]
[ 0.00000000e+00 0.00000000e+00 5.56303524e-05 0.00000000e+00]
[-4.23711147e-07 0.00000000e+00 0.00000000e+00 2.50563381e-04]]
And plots:


Back to Contents.
Bruhn’s Multi-celled Example¶
Most idealized solutions to aerospace beam problems assume that booms are connected to segments that can only resist shear. Shear connectors can be used to achieve this, since they only use as inputs a material shear modulus and its thickness.
Consider the cross section with 5 cells from Bruhn’s example A15.12 (ref [3]). Two important assumptions are made: the cells segments (beam walls) can only resist shear and the points (beam flanges) develop all the bending resistance. As stated above, in Abdbeam we can enforce these assumptions by modeling the segments with shear connector materials and the section points with EA and/or GJ properties (booms). A Vz load of 1000lbf is applied to the section and only the shear flows (Nxy) at the segments and and shear center are of interest. Units for this problem are: in, lbf and psi.
We’ll start creating the section, calculating its properties and plotting its section. Notice that booms are represented with additional circles around points:
import abdbeam as ab
sc = ab.Section()
# Create a dictionary for the shear connector materials
mts = dict()
mts[1] = ab.ShearConnector(0.03, 3846154)
mts[2] = ab.ShearConnector(0.04, 3846154)
mts[3] = ab.ShearConnector(0.05, 3846154)
mts[4] = ab.ShearConnector(0.064, 3846154)
# Create a points dictionary based on Y and Z point coordinates
pts = dict()
pts[1] = ab.Point(0,0,2e7,0,'a')
pts[2] = ab.Point(10,0,1e7,0,'b')
pts[3] = ab.Point(20,0,5e6,0,'c')
pts[4] = ab.Point(30,0,5e6,0,'d')
pts[5] = ab.Point(40,0,5e6,0,'e')
pts[6] = ab.Point(50,0,1e7,0,'f')
pts[11] = ab.Point(0,10,2e7,0,'a_')
pts[12] = ab.Point(10,10,1e7,0,'b_')
pts[13] = ab.Point(20,10,5e6,0,'c_')
pts[14] = ab.Point(30,10,5e6,0,'d_')
pts[15] = ab.Point(40,10,5e6,0,'e_')
pts[16] = ab.Point(50,10,1e7,0,'f_')
# Create a segments dictionary referencing point and material ids
sgs = dict()
sgs[1] = ab.Segment(1,2,2,'Bottom 1')
sgs[2] = ab.Segment(2,3,2,'Bottom 2')
sgs[3] = ab.Segment(3,4,2,'Bottom 3')
sgs[4] = ab.Segment(4,5,1,'Bottom 4')
sgs[5] = ab.Segment(5,6,1,'Bottom 5')
sgs[11] = ab.Segment(11,12,2,'Top 1')
sgs[12] = ab.Segment(12,13,2,'Top 2')
sgs[13] = ab.Segment(13,14,2,'Top 3')
sgs[14] = ab.Segment(14,15,1,'Top 4')
sgs[15] = ab.Segment(15,16,1,'Top 5')
sgs[21] = ab.Segment(1,11,4,'Web 1')
sgs[22] = ab.Segment(2,12,3,'Web 2')
sgs[23] = ab.Segment(3,13,2,'Web 3')
sgs[24] = ab.Segment(4,14,2,'Web 4')
sgs[25] = ab.Segment(5,15,1,'Web 5')
sgs[26] = ab.Segment(6,16,1,'Web 6')
# Point the dictionaries to the section
sc.materials = mts
sc.points = pts
sc.segments = sgs
# Calculate section properties
sc.calculate_properties()
# Plot the section
ab.plot_section(sc, centroid =False, princ_dir=False, thickness=False,
segment_coord=True, title='Abdbeam - Bruhn Example')

Next we’ll create the load case, calculate its internal loads and obtain the shear flows accessing the internal loads Pandas dataframe sc.sgs_int_lds_df
directly. Since the segments develop no bending resistance, the shear flow between adjacent points will be constant, and the average Nxy per segment is appropriate:
#Create load case and calculate its internal loads:
sc.loads[1] = ab.Load(Vz_s=1000)
sc.calculate_internal_loads()
# Print the shear flows Nxy for all segments
df = sc.sgs_int_lds_df
print(df[[('Segment_Id', ''),('Nxy','Avg')]])
# Print the shear center location
print('')
print('Shear center is at y = {:.8e}'.format(sc.ys))
Which prints:
Segment_Id Nxy
Avg
0 1 2.878645
1 2 2.096924
2 3 0.210851
3 4 -1.253519
4 5 -2.586107
5 11 -2.878645
6 12 -2.096924
7 13 -0.210851
8 14 1.253519
9 15 2.586107
10 21 33.484992
11 22 18.963538
12 23 10.976982
13 24 10.555279
14 25 10.423497
15 26 15.595711
Shear center is at y = 1.93602680e+01
Back to Contents.
Torque-box Example¶
Shear connectors can also be used to model mechanical or bonded joints. This allows the representation of multiple elements of a cross section by their mid-surfaces, usually at the price of creating additional small enclosed areas (cells) between pairs of adjacent shear connector segments.
In this example, we create a torque-box using this modeling approach, which could be extended to complex cross sections such as those found in wings, vertical stabilizers, horizontal stabilizers and others (to use aerospace examples). Here we have a C-Section forward spar and a I-Section rear spar with rows of fasteners (shear connectors) connecting them to top and bottom skins. Notice that this modeling approach added two additional closed cells near the rear spar (see the Hat Stiffener Example for a more detailed discussion on the effects of such small closed cells in the section torsional stiffness). Units for this problem are: in, lbf and psi.
First we create the cross section, calculate is properties and plot it:
import abdbeam as ab
sc = ab.Section()
# Create a dictionary to store ply materials shared by laminates
ply_mts = dict()
ply_mts[1] = ab.PlyMaterial(0.0075, 1.149e7, 1.149e7, 6.6e5, 0.04)
# Create the materials dictionary for the laminates and shear connector:
mts = dict()
mts[1] = ab.Laminate()
mts[1].ply_materials[1] = ply_mts[1]
mts[1].plies = [[45,1], [-45,1]]*2 + [[0,1]]*3
mts[1].symmetry = 'S'
mts[2] = ab.ShearConnector(0.25, 6381760)
# Create a points dictionary based on Y and Z point coordinates:
pts = dict()
pts[1] = ab.Point(1,-4)
pts[2] = ab.Point(2,-4)
pts[3] = ab.Point(12,-4)
pts[4] = ab.Point(14,-4)
pts[5] = ab.Point(15,-4)
pts[11] = ab.Point(1,1.21)
pts[12] = ab.Point(2,1.21)
pts[13] = ab.Point(12,1.21)
pts[14] = ab.Point(14,1.21)
pts[15] = ab.Point(15,1.21)
pts[21] = ab.Point(1,-3.895)
pts[22] = ab.Point(2,-3.895)
pts[23] = ab.Point(3,-3.895)
pts[24] = ab.Point(3,1.105)
pts[25] = ab.Point(2,1.105)
pts[26] = ab.Point(1,1.105)
pts[31] = ab.Point(11,-3.895)
pts[32] = ab.Point(12,-3.895)
pts[33] = ab.Point(13,-3.895)
pts[34] = ab.Point(14,-3.895)
pts[35] = ab.Point(15,-3.895)
pts[36] = ab.Point(11,1.105)
pts[37] = ab.Point(12,1.105)
pts[38] = ab.Point(13,1.105)
pts[39] = ab.Point(14,1.105)
pts[40] = ab.Point(15,1.105)
# Create a segments dictionary referencing point and material ids:
sgs = dict()
sgs[1] = ab.Segment(1,2,1,'Bottom Skin')
sgs[2] = ab.Segment(2,3,1,'Bottom Skin')
sgs[3] = ab.Segment(3,4,1,'Bottom Skin')
sgs[4] = ab.Segment(4,5,1,'Bottom Skin')
sgs[11] = ab.Segment(11,12,1,'Top Skin')
sgs[12] = ab.Segment(12,13,1,'Top Skin')
sgs[13] = ab.Segment(13,14,1,'Top Skin')
sgs[14] = ab.Segment(14,15,1,'Top Skin')
sgs[21] = ab.Segment(21,22,1,'Fwd Spar')
sgs[22] = ab.Segment(22,23,1,'Fwd Spar')
sgs[23] = ab.Segment(23,24,1,'Fwd Spar')
sgs[24] = ab.Segment(24,25,1,'Fwd Spar')
sgs[25] = ab.Segment(25,26,1,'Fwd Spar')
sgs[31] = ab.Segment(31,32,1,'Rear Spar')
sgs[32] = ab.Segment(32,33,1,'Rear Spar')
sgs[33] = ab.Segment(33,34,1,'Rear Spar')
sgs[34] = ab.Segment(34,35,1,'Rear Spar')
sgs[35] = ab.Segment(33,38,1,'Rear Spar')
sgs[36] = ab.Segment(36,37,1,'Rear Spar')
sgs[37] = ab.Segment(37,38,1,'Rear Spar')
sgs[38] = ab.Segment(38,39,1,'Rear Spar')
sgs[39] = ab.Segment(39,40,1,'Rear Spar')
sgs[91] = ab.Segment(2,22,2,'Connector')
sgs[92] = ab.Segment(3,32,2,'Connector')
sgs[93] = ab.Segment(4,34,2,'Connector')
sgs[94] = ab.Segment(25,12,2,'Connector')
sgs[95] = ab.Segment(37,13,2,'Connector')
sgs[96] = ab.Segment(39,14,2,'Connector')
# Point the dictionaries to the section
sc.materials = mts
sc.points = pts
sc.segments = sgs
# Calculate section properties
sc.calculate_properties()
sc.summary()
# Plot the section
ab.plot_section(sc, pt_size=2, title='Abdbeam - Torque-box Example',
figsize=(6.4*1.5, 4.8*1.5))

Next we’re going to create 7 load cases with axial, bending, torque and shear loads integrated at the section origin. Yp, zp, ys and zs are then all equal to the default zero and for this reason don’t need to be explicitly entered. Notice that if Px_c were used instead of Px, the axial load would always be assumed to act on the centroid. By using a Px though, a moment arm results from the load application point distance to the calculated centroid. Similarly, if Vy_s and Vz_s were used instead of Vy and Vz, the shear loads would be assumed to always act at the shear center, creating no additional torque in the section. The approach chosen for this example is the typical case for a torque box: loads are integrated at a defined point in space and sizing proceeds changing centroid and shear center locations.
Create the load cases and calculate their internal loads:
# Create load cases and calculate their internal loads
sc.loads[8] = ab.Load(Px=17085,My=-140914,Mz=-7208,Tx=1595,Vy=4727,Vz=-1661)
sc.loads[4] = ab.Load(Px=11854,My=-89211,Mz=-33716,Tx=-57488,Vy=5684,Vz=394)
sc.loads[1] = ab.Load(Px=2395,My=-83206,Mz=210099,Tx=-43162,Vy=1316,Vz=407)
sc.loads[10] = ab.Load(Px=-7458,My=-15571,Mz=-96370,Tx=-3615,Vy=564,Vz=-369)
sc.loads[2] = ab.Load(Px=1000,My=-30865,Mz=180498,Tx=11653,Vy=-7001,Vz=-189)
sc.loads[3] = ab.Load(Px=-281,My=133314,Mz=-123966,Tx=324,Vy=9389,Vz=-1514)
sc.loads[6] = ab.Load(Px=299,My=40658,Mz=101677,Tx=7102,Vy=9214,Vz=-3545)
sc.calculate_internal_loads()
Now let’s say we are analyzing the rear spar and would like to find the critical compressive Nx load among all cases, identify its load case id and segment. Since the calculated internal loads are stored in the Pandas dataframe sc.sgs_int_lds_df
, we can use Pandas methods to achieve this:
# Use Pandas methods to get info on the critical spar compressive Nx
df = sc.sgs_int_lds_df
spar_sgs = range(31,40)
df = df[df['Segment_Id'].isin(spar_sgs)]
idx = df[('Nx', 'Min')].idxmin()
min_Nx = round(df.loc[idx, ('Nx', 'Min')],1)
min_sg = int(df.loc[idx, 'Segment_Id'])
min_lc = int(df.loc[idx, 'Load_Id'])
print(('Minimum rear spar Nx is {}, from segment {}, load case {}'
).format(min_Nx, min_sg, min_lc))
Which prints:
Minimum rear spar Nx is -1935.9, from segment 34, load case 3
We can finish the example plotting the Nx from this critical load case. To do this, we’re going to filter the rear spar from the rest of the cross section using the parameter plot_sgs
and get the load case id from the variable min_lc
defined on the previous code block:
# Plot the critical compressive case Nx internal loads
ab.plot_section_loads(sc, min_lc, int_load_list=['Nx'],
title_list=['Critical Compressive Nx, LC '+
str(min_lc)], plot_sgs=range(31,40),
figsize=(6.4*0.8, 4.8*0.8))

Back to Contents.
Hat Stiffener Example¶
In this example we create a hat stiffner and a skin, both represented at their laminates’ mid-planes. Abdbeam sections cannot have floating segments and we want to capture the hat’s closed cell contribution to the section’s GJ, so we chose here to connect the hat plies to the bottom skin using ShearConnector
materials. For these connector’s properties, we entered a t and G that matches compliance term alpha66 (=1/(G*t)) of the skin laminate material.
Notice that, by also connecting the left and right outermost cap points, we added two other cells to the analysis. The areas of these two cells are small and they only increase the total section GJ by 3% (compared to a section removing connectors 91 and 94). Connecting segments that are co-cured or bonded, on the other hand, tend to better represent the Nxy shear distribution in complex sections. This example also shows multiple ways to define a stacking sequence using python lists capabilities. Units for this problem are: in, lbf and psi.
We’ll start creating the section, calculating its properties and showing a summary of these properties:
import abdbeam as ab
sc = ab.Section()
# Create a dictionary to store ply materials shared by laminates
ply_mts = dict()
ply_mts[1] = ab.PlyMaterial(0.0075, 2.147e7, 1.4e6, 6.6e5, 0.3)
ply_mts[2] = ab.PlyMaterial(0.0075, 1.149e7, 1.149e7, 6.6e5, 0.04)
# Create the materials dictionary for the laminates and shear connector:
mts = dict()
mts[1] = ab.Laminate()
mts[1].ply_materials[2] = ply_mts[2]
mts[1].plies = [[45,2], [-45,2]] + [[0,2]]*3
mts[1].symmetry = 'S'
mts[2] = ab.Laminate()
mts[2].ply_materials[2] = ply_mts[2]
mts[2].plies = [[45,2], [-45,2]]*2 + [[0,2]]
mts[2].symmetry = 'S'
mts[3] = ab.Laminate()
mts[3].ply_materials[1] = ply_mts[1]
mts[3].ply_materials[2] = ply_mts[2]
mts[3].plies = [[45,2], [-45,2]] + [[0,1]]*3 + [[0,2]] + [[0,1]]*2
mts[3].symmetry = 'SM'
mts[4] = ab.ShearConnector(0.075, 2605615)
# Create a points dictionary based on Y and Z point coordinates:
pts = dict()
pts[1] = ab.Point(-2, 0)
pts[2] = ab.Point(-1, 0)
pts[3] = ab.Point(1, 0)
pts[4] = ab.Point(2, 0)
pts[5] = ab.Point(-2, 0.075)
pts[6] = ab.Point(-1, 0.075)
pts[7] = ab.Point(-0.35, 0.8)
pts[8] = ab.Point(0.35, 0.8)
pts[9] = ab.Point(1, 0.075)
pts[10] = ab.Point(2, 0.075)
# Create a segments dictionary referencing point and material ids:
sgs = dict()
sgs[1] = ab.Segment(1,2,1,'Skin_Left')
sgs[2] = ab.Segment(2,3,1,'Skin_Center')
sgs[3] = ab.Segment(3,4,1,'Skin_Right')
sgs[10] = ab.Segment(5,6,2,'Hat_Left_Foot')
sgs[11] = ab.Segment(6,7,2,'Hat_Left_Web')
sgs[12] = ab.Segment(7,8,3,'Hat_Top')
sgs[13] = ab.Segment(8,9,2,'Hat_Right_Web')
sgs[14] = ab.Segment(9,10,2,'Hat_Right_Foot')
sgs[91] = ab.Segment(1,5,4,'Connector_1')
sgs[92] = ab.Segment(2,6,4,'Connector_1')
sgs[93] = ab.Segment(3,9,4,'Connector_1')
sgs[94] = ab.Segment(4,10,4,'Connector_1')
# Point the dictionaries to the section
sc.materials = mts
sc.points = pts
sc.segments = sgs
# Calculate section properties
sc.calculate_properties()
sc.summary()
Which prints:
Section Summary
===============
Number of points: 10
Number of segments: 12
Number of cells: 3
Centroid
--------
yc = 0.00000000e+00
zc = 2.51301984e-01
Shear Center
------------
ys = 1.83880688e-16
zs = 4.13936823e-01
Replacement Stiffnesses
-----------------------
EA = 5.43010577e+06
EIyy = 6.22690978e+05
EIzz = 5.79683101e+06
EIyz = 7.27595761e-12
GJ = 2.71545365e+05
EImax = 5.79683101e+06
EImin = 6.22690978e+05
Angle = 8.05702321e-17
[P_c] - Beam Stiffness Matrix at the Centroid
---------------------------------------------
[[ 5.43010577e+06 -1.79003360e-10 -2.09160066e-27 0.00000000e+00]
[ 0.00000000e+00 6.22690978e+05 7.27595761e-12 0.00000000e+00]
[ 0.00000000e+00 -1.45519152e-11 5.79683101e+06 0.00000000e+00]
[ 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.71545365e+05]]
[W_c] - Beam Compliance Matrix at the Centroid
----------------------------------------------
[[ 1.84158476e-07 5.29395592e-23 0.00000000e+00 0.00000000e+00]
[ 0.00000000e+00 1.60593302e-06 -2.01570488e-24 0.00000000e+00]
[ 0.00000000e+00 4.03140976e-24 1.72508048e-07 0.00000000e+00]
[ 0.00000000e+00 0.00000000e+00 0.00000000e+00 3.68262592e-06]]
[P] - Beam Stiffness Matrix at the Origin
-----------------------------------------
[[ 5.43010577e+06 1.36459635e+06 -3.21443370e-27 -0.00000000e+00]
[ 1.36459635e+06 9.65616750e+05 7.27595761e-12 0.00000000e+00]
[ 1.36115257e-27 -1.45519152e-11 5.79683101e+06 0.00000000e+00]
[ 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.71545365e+05]]
[W] - Beam Compliance Matrix at the Origin
------------------------------------------
[[ 2.85577461e-07 -4.03574153e-07 5.06550636e-25 0.00000000e+00]
[-4.03574153e-07 1.60593302e-06 -2.01570488e-24 0.00000000e+00]
[-1.01310127e-24 4.03140976e-24 1.72508048e-07 0.00000000e+00]
[ 0.00000000e+00 0.00000000e+00 0.00000000e+00 3.68262592e-06]]
Next, we’ll plot the section hiding segments 91 to 94 (the connectors), since we don’t care about their visual representation:
# Plot the section
ab.plot_section(sc, filter_sgs=[91,92,93,94],
title='Abdbeam - Hat Example',
prop_color='#471365')

Next, we’ll create two load cases and plot the first case (a rather unusual load case for a stiffener, for ilustration purposes only). Notice that in this plot we listed only the cap segments to show results and continued to filter the connectors:
# Create load cases and calculate their internal loads
sc.loads[1] = ab.Load(My=100, Vy_s=1000)
sc.loads[2] = ab.Load(Tx=100)
sc.calculate_internal_loads()
# Plot internal loads
ab.plot_section_loads(sc, 1, contour_color = 'viridis',
result_sgs=[10,11,12,13,14],
figsize=(6.4*0.8, 4.8*0.8),
diagram_scale=0.5, filter_sgs=[91,92,93,94])

Back to Contents.
References
[1] | (1, 2) Kollár LP, Springer GS. Mechanics of composite structures. Cambridge university press; 2003 Feb 17. |
[2] | Megson TH. Aircraft structures for engineering students. Butterworth-Heinemann; 2016 Oct 17. |
[3] | Bruhn EF, Bollard RJ. Analysis and design of flight vehicle structures. Indianapolis: Jacobs Publishing; 1973 Jun. |
Theory¶
Abdbeam uses a thin-walled anisotropic composite beam theory that includes closed cells with open branches and booms. For the detailed theory behind Abdbeam, Ref. [1] is the most complete reference. Ref [2] and Ref. [3] are also great references on its originating theory.
Hypothesis and Limitations¶
- Prismatic thin-walled beams undergoing small deformations;
- Materials behave in a linearly elastic manner;
- Bernoulli-Navier hypothesis: originally plane cross sections of a beam undergoing bending remain plane and perpendicular to the axis of the beam;
- The effects of shear deformation and restrained warping are neglected.
Sign Conventions¶
The figure below show the sign conventions for the cross section axis, its normal force, bending moments, torque and transverse shear forces:

Warning
The Mz sign convention used in Abdbeam requires special attention. As seen above, the sign of the bending moments is that they are positive when they induce tension in the positive yz quadrant of the beam cross section (as seen in Ref. [1] to Ref. [4]). In contrast, Finite Element Analysis software packages commonly adopt a right-hand rule to define the tension and compression signs of a positive Mz bending moment. Remember to multiply by -1 cross sectional Mz loads obtained from these sources.
References
[2] | Kollár LP, Springer GS. Mechanics of composite structures. Cambridge university press; 2003 Feb 17. |
[3] | Kollár LP and Pluzsik A. Analysis of thin-walled composite beams with arbitrary layup. J Reinf Plast Compos 2002; 21: 1423–1465. |
[4] | Megson TH. Aircraft structures for engineering students. Butterworth-Heinemann; 2016 Oct 17. |
Python API Reference¶
License¶
BSD 3-Clause License
Copyright (c) 2018, Danilo Seixas Victorazzo All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
- Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
- Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Source Code¶
The source code is hosted on GitHub at https://github.com/victorazzo/abdbeam.
Quick Example¶
Let’s use Abdbeam to analyze the cross section with two closed cells below (from [2]):

Start creating the section materials, its points and segments (we’ll also calculate the section properties and request a summary at the end):
import abdbeam as ab
sc = ab.Section()
# Create a materials dictionary:
mts = dict()
mts[1] = ab.Laminate()
ply_mat = ab.PlyMaterial(0.166666, 148000, 9650, 4550, 0.3)
mts[1].ply_materials[1] = ply_mat
mts[1].plies = [[0,1]]*6 + [[45,1]]*6
# Create a points dictionary based on Y and Z point coordinates:
pts = dict()
pts[1] = ab.Point(0, -35)
pts[2] = ab.Point(-50, -35)
pts[3] = ab.Point(-50, 35)
pts[4] = ab.Point(0, 35)
pts[5] = ab.Point(50, 35)
pts[6] = ab.Point(50, -35)
# Create a segments dictionary referencing point and material ids:
sgs = dict()
sgs[1] = ab.Segment(1,2,1)
sgs[2] = ab.Segment(2,3,1)
sgs[3] = ab.Segment(3,4,1)
sgs[4] = ab.Segment(4,1,1)
sgs[5] = ab.Segment(4,5,1)
sgs[6] = ab.Segment(5,6,1)
sgs[7] = ab.Segment(6,1,1)
# Point the dictionaries to the section
sc.materials = mts
sc.points = pts
sc.segments = sgs
# Calculate and output section properties
sc.calculate_properties()
sc.summary()
Which prints:
Section Summary
===============
Number of points: 6
Number of segments: 7
Number of cells: 2
Centroid
--------
yc = -2.67780636e-01
zc = 0.00000000e+00
Shear Center
------------
ys = -1.59091432e-01
zs = -5.86419365e-04
Replacement Stiffnesses
-----------------------
EA = 6.80329523e+07
EIyy = 5.24834340e+10
EIzz = 8.36408748e+10
EIyz = 0.00000000e+00
GJ = 1.23762317e+10
EImax = 8.36408748e+10
EImin = 5.24834340e+10
Angle = 0.00000000e+00
[P_c] - Beam Stiffness Matrix at the Centroid
---------------------------------------------
[[ 6.80329523e+07 0.00000000e+00 2.46320132e+05 -1.43701515e+08]
[ 0.00000000e+00 5.24834340e+10 0.00000000e+00 0.00000000e+00]
[ 2.46320132e+05 0.00000000e+00 8.36408748e+10 -2.12142163e+07]
[-1.43701515e+08 0.00000000e+00 -2.12142163e+07 1.23762317e+10]]
[W_c] - Beam Compliance Matrix at the Centroid
----------------------------------------------
[[1.50683149e-08 0.00000000e+00 1.66286490e-28 1.74959530e-10]
[0.00000000e+00 1.90536313e-11 0.00000000e+00 0.00000000e+00]
[1.57282135e-25 0.00000000e+00 1.19558821e-11 2.04936911e-14]
[1.74959530e-10 0.00000000e+00 2.04936911e-14 8.28315446e-11]]
[P] - Beam Stiffness Matrix at the Origin
-----------------------------------------
[[ 6.80329523e+07 0.00000000e+00 -1.79715871e+07 -1.43701515e+08]
[ 0.00000000e+00 5.24834340e+10 0.00000000e+00 0.00000000e+00]
[-1.79715871e+07 0.00000000e+00 8.36456213e+10 1.72662667e+07]
[-1.43701515e+08 0.00000000e+00 1.72662667e+07 1.23762317e+10]]
[W] - Beam Compliance Matrix at the Origin
------------------------------------------
[[1.50691722e-08 0.00000000e+00 3.20155371e-12 1.74965018e-10]
[0.00000000e+00 1.90536313e-11 0.00000000e+00 0.00000000e+00]
[3.20155371e-12 0.00000000e+00 1.19558821e-11 2.04936911e-14]
[1.74965018e-10 0.00000000e+00 2.04936911e-14 8.28315446e-11]]
Now let’s create two load cases (101 and 102) and calculate their internal loads:
sc.loads = dict()
sc.loads[101] = ab.Load(My=5e6)
sc.loads[102] = ab.Load(Tx=250000, Vz=5000.0)
sc.calculate_internal_loads()
Next print all internal loads (which outputs a lot of data we’ll not show here):
sc.print_internal_loads()
Or access the Pandas dataframe containing these internal loads directly:
df = sc.sgs_int_lds_df
Next plot the cross section and its properties (we’ll show the segment orientations, hide legends, change the centroid , shear center and principal axis colors and use a custom figure size):
ab.plot_section(sc, segment_coord=True, title='Abdbeam - Example',
legend=False, prop_color='#471365', figsize=(5.12, 3.84))

Finally, plot Nx and Nxy for load case 101 (we’ll change the matplotlib contour palette, reduce the internal load diagram scale, and use a custom figure size):
ab.plot_section_loads(sc, 101, contour_color='viridis', diagram_scale=0.7,
int_load_list=['Nx', 'Nxy'], figsize=(5.12, 3.84))

Footnotes
[1] | Booms are discrete stiffeners containing axial and torsional stiffnesses. |
[2] | Victorazzo DS, De Jesus A. A Kollár and Pluzsik anisotropic composite beam theory for arbitrary multicelled cross sections. Journal of Reinforced Plastics and Composites. 2016 Dec;35(23):1696-711. |