Abdbeam Documentation
Release 0.2.1

Danilo S. Victorazzo

Feb 11, 2019

Contents

1 Contents

2 Source Code

3 Quick Example

4 Indices and tables

Python Module Index

37
39
43

45

Abdbeam Documentation, Release 0.2.1

Abdbeam is a python package for the cross section analysis of thin-walled composite material beams of any shape.

Abdbeam - Wy = 1000lbf - Nxy (Ibffin)

Abdbeam - A Hat Stiffener 212.3

20
® (Centroid 195.2
¥ Shear Center

---- Princ. Axis 1r3.1

161.0

1
i
1
15 - !
:
1
1
1
1

143.9

126.8

109.7

926
—0.5 755

-1.0 58.4

T T T T T T T T
-20 -15 -10 -05 00 05 10 15 20 41.3

These are a few things you can do with Abdbeam:

* Use a fast thin-walled anisotropic composite beam theory including closed cells, open branches, shear connec-
tors and booms';

* Recover replacement stiffnesses (EA, Elyy, Elzz, Elyz, GJ) and/or a full 4 x 4 stiffness matrix for beams with
arbitrary layups and shapes;

¢ Recover centroid and shear center locations;

» Obtain internal load distributions (Nx, Nxy, Mx, My, Mxy for segments; Px and Tx for booms) for a large
number of cross section load cases (defined by Px, My, Mz, Tz, Vy and Vz section loads);

* Plot cross sections, their properties and internal loads.

! Booms are discrete stiffeners containing axial and torsional stiffnesses.

Contents 1

Abdbeam Documentation, Release 0.2.1

2 Contents

CHAPTER 1

Contents

1.1 Installation

1.1.1 Windows and UNIX (MacOS/Linux)

Abdbeam is installed using PyPI (Python package index)::

pip install abdbeam

1.1.2 Dependencies

The following external packages are required to run Abdbeam:
* Numpy
* Pandas

* Matplotlib

1.2 Creating Sections

When creating your own arbitrary sections, pay attention to the following modeling rules:
* No floating segments;
* No floating points;
* No segments crossing each other;
* No coincident or partially overlapping segments;
» Unique integer ids for materials, segments and points.

The best place to start creating your own sections is referring to the Abdbeam applications found in the Examples page.

https://pypi.org/project/abdbeam
https://www.numpy.org
https://pandas.pydata.org
https://matplotlib.org

Abdbeam Documentation, Release 0.2.1

1.3 Examples

This page shows application examples with open sections, sections with branches, closed sections, multi-cells, booms
and shear connectors. You can also locate these examples as individual modules in the abdbeam. examples pack-
age.

1.3.1 Contents

Kolldr/Springer C-Section Example

* Megson’s Closed Section with Branches Example

Kolldar/Springer Single Cell Example
* Bruhn’s Multi-celled Example
 Torque-box Example

* Hat Stiffener Example

1.3.2 Kollar/Springer C-Section Example

Open sections are the simplest and most common beam type. In this C-Section example from ref.!, we calculate, print
and plot section properties, create a load case with a vertical shear of 100N and plot its Nxy internal loads. Units for
this problem are: m, N and Pa:

import abdbeam as ab

sc = ab.Section()
Create a materials dictionary:
mts = dict ()

mts[1l] = ab.Laminate ()

mts[1l].ply_materials([l] = ab.PlyMaterial (0.0001, 148e9, 9.65e9, 4.55e9,
0.3)

mts[1l].ply_materials([2] = ab.PlyMaterial (0.0002, 16.39e9, 16.39e9,
38.19e9, 0.801)

mts([l].plies = [[0O,2], [0,2], [O0,1]1, [0O,11,

(0,11, 10,11, 10,11, (0,111

mts[1l].symmetry = 'S’

Create a points dictionary based on Y and Z point coordinates:

pts = dict ()

pts[l] = ab.Point (0.0, 0.0)

pts[2] = ab.Point (0.049, 0.0)

pts[3] = ab.Point (0.049, 0.062)

pts[4] = ab.Point (0.0, 0.062)

Create a segments dictionary referencing point and material ids:
sgs = dict ()

sgs[l] = ab.Segment(1,2,1)
sgs[2] = ab.Segment (2,3,1)
sgs[3] = ab.Segment (3,4,1)

Point the dictionaries to the section
sc.materials = mts

sc.points = pts

sc.segments = sgs

(continues on next page)

! Kolldr LP, Springer GS. Mechanics of composite structures. Cambridge university press; 2003 Feb 17.

4 Chapter 1. Contents

https://www.amazon.com/Mechanics-Composite-Structures-L%C3%A1szl%C3%B3-Koll%C3%A1r/dp/0521126908/ref=sr_1_1?ie=UTF8&qid=1544936929&sr=8-1&keywords=Mechanics+of+composite+structures

Abdbeam Documentation, Release 0.2.1

(continued from previous page)

Calculate and output section properties
sc.calculate_properties ()

sc.summary ()

ab.plot_section(sc, figsize=(6.4%x0.8, 4.8%0.8))

Create a single load case and calculate its internal loads
sc.loads[1l] = ab.Load(Vz_s=-100)
sc.calculate_internal_loads ()

Plot internal loads

ab.plot_section_loads(sc, 1, int_load_list=['Nxy'],
title_list=["'Abdbeam - Nxy (N/m)'],
figsize=(6.4%x0.8, 4.8%x0.8))

Which prints:

Section Summary

Number of points: 4

Number of segments: 3

Number of cells: 0

Centroid

ycC = 3.39937500e-02

zZC = 3.10000000e-02

Shear Center

Vs = 6.92284048e-02

zs = 3.10000000e-02

Replacement Stiffnesses

EA = 3.08687460e+07

Elyy = 2.20044020e+04

Elzz = 8.18260398e+03

Elyz = 3.72546093e-12

GJ = 1.31941376e+01

EImax = 2.20044020e+04

EImin = 8.18260398e+03

Angle = -1.54432286e-14

[P_c] - Beam Stiffness Matrix at the Centroid

[[3.08687460e+07 2.87672843e-10 -1.44055909e-10 0.00000000e+00]
[2.87672843e-10 2.20044020e+04 3.72546093e-12 0.00000000e+00]
[1.45837431e-10 5.47177645e-12 8.18260398e+03 0.00000000e+00]
[0.00000000e+00 0.00000000e+00 0.00000000e+00 1.31941376e+01]]

[W_c] - Beam Compliance Matrix at the Centroid

[[3.23952259e-08 -4.23516474e-22 5.70322567e-22 0.00000000e+00]
[-4.23516474e-22 4.54454522e-05 -2.06908775e-20 0.00000000e+00]
[-5.77375679e-22 -3.03897581e-20 1.22210485e-04 0.00000000e+00]
[0.00000000e+00 0.00000000e+00 0.00000000e+00 7.57912363e-02]]

[P] - Beam Stiffness Matrix at the Origin

(continues on next page)

1.3. Examples

Abdbeam Documentation, Release 0.2.1

(continued from previous page)

[[3.08687460e+07 9.56931125e+05 1.04934443e+06 0.00000000e+00]
[9.56931125e+05 5.16692669e+04 3.25296774e+04 0.00000000e+00]
[1.04934443e+06 3.25296774e+04 4.38537563e+04 0.00000000e+00]
[0.00000000e+00 0.00000000e+00 0.00000000e+00 1.31941376e+01]]
[W] - Beam Compliance Matrix at the Origin
[[2.17291691e-07 -1.40880902e-06 -4.15439267e-06 0.00000000e+00]
[-1.40880902e-06 4.54454522e-05 -2.06908775e-20 0.00000000e+00]
[-4.15439267e-06 —-3.03897581e-20 1.22210485e-04 0.00000000e+00]
[0.00000000e+00 0.00000000e+00 0.00000000e+00 7.57912363e-02]]
And plots:
I
e ————— T ——— A
0.06 ! !
] 1
i i
0.05 |
i i
1 1
0.04 1 i i
& Centroid !
003+ X Shear Center ——-—- - Hommmmmmm s ¥ T
---- Princ. Axis | i
I 1
i i
0.02 :
|
I 1
0.01 | i
| |
| i i
0.00 e e =
T T I T T T
0.00 0.02 0.04 0.06 0.08

Chapter 1. Contents

Abdbeam Documentation, Release 0.2.1

Abdbeam - Nxy (N/m)

-175
—351
—526
4 —701
1-877
1 -1052

1227

—1402

—1578

1753

Back to Contents.

1.3.3 Megson’s Closed Section with Branches Example

Megson’s book (ref?) example 19.1 is dedicated to calculating the shear flow distribution for a beam combining open
and closed section elements. Units for this problem are: mm, N and MPa.

We start creating the section and calculating its properties:

import abdbeam as ab

sc = ab.Section()

Create a dictionary for the isotropic material
mts dict ()

mts[1l] = ab.Isotropic(2, 70000, 0.3)

Create a points dictionary based on Y and Z point coordinates
pts = dict ()

pts[1l] = ab.Point (0,-200)

pts([2] = ab.Point (-100,-200)

pts[3] = ab.Point (-100,0)

pts[4] = ab.Point (-200,0)

pts[5] = ab.Point (-200,-100)

pts([6] = ab.Point (0,0)

pts[7] = ab.Point(lOO -200)

pts[8] = ab.Point (100,0)

pts[9] = ab.Point (200,0)

pts[10] = ab.Point (200,-100)

Create a segments dictionary referencing point and material ids
sgs = dict ()

sgs[l] = ab.Segment(1,2,1)

(continues on next page)

2 Megson TH. Aircraft structures for engineering students. Butterworth-Heinemann; 2016 Oct 17.

1.3. Examples 7

https://www.amazon.com/Aircraft-Structures-Engineering-Students-Aerospace/dp/0080969054/ref=sr_1_1?ie=UTF8&qid=1548602525&sr=8-1&keywords=Megson+TH.+Aircraft+structures+for+engineering+students

Abdbeam Documentation, Release 0.2.1

(continued from previous page)

sgs[2] = ab.Segment (2,3,1)
sgs[3] = ab.Segment (3,4,1)
sgs[4] = ab.Segment (4,5,1)
sgs[5] = ab.Segment (3,6,1)
sgs[6] = ab.Segment(1,7,1)
sgs[7] = ab.Segment (7,8,1)
sgs[8] = ab.Segment (8,9,1)
sgs[9] = ab.Segment (9,10,1)

sgs[10] = ab.Segment (8,6,1)
Point the dictionaries to the section

sc.materials = mts
sc.points = pts
sc.segments = sgs

Calculate section properties
sc.calculate_properties|()

Next, we are going to plot the section showing its segments’ orientations, as they are essential to understand shear
signs:

Plot the section
ab.plot_section(sc, segment_coord=True, title='Abdbeam - Megson Example')

Abdbeam - Megson Example

1
o4 ® Centroid i
® Shear Center i
1
---- Princ. Axis !
04 w » + » 9
| |
1
i
-5 4 - 3?: -
1
e ?_ _________________________________

—100 -] | —
i
i
1
150 4 |
1
i
]

—200 - . " -
1
1
i
250 4 !
1

I 1 1 I 1
200 =100 | 100 200

Abdbeam by default plots positive diagrams towards the top side of the laminate and negative diagrams towards the
bottom side. To change individual diagram directions, the parameter diagram_factor_list can be used with factors
1.0 or -1.0 as desired. This is also a rather large cross section with thin laminates, so ploting a countour inside the
thickness will be hardly visible. To provide a clearer internal load view, we’ll use a contour diagram:

8 Chapter 1. Contents

Abdbeam Documentation, Release 0.2.1

#Create load case and calculate its internal loads:

sc.loads[1l] = ab.Load(Vz_s=100000)

sc.calculate_internal_loads ()

ab.plot_section_loads(sc, 1, segment_contour=False, diagram=True,
diagram_contour=True, diagram_alpha=1.0,
contour_levels=20, contour_color='coolwarm',
diagram_factor_list=[1,1,-1,-1,1,-1,-1,1,1,-17],
thickness=False, int_load_list=['Nxy'],
title_list=['Nxy (N/mm)'])

MNxy (N/mm) 2502

2659
2517
2375
223.3
209.0
4194 8
—4180.6
—1166.4
1152.2
41137.9
11237
4108.5
495.3
* —""‘- » - 81.0
) 66.8
52.6
38.4
241
9.9
—d 3

Back to Contents.

1.3.4 Kollar/Springer Single Cell Example

In this single rectangular cell example from ref.!, the laminate is asymmetric. This requires special attention when
defining the point connectivity of each segment, so that the bottom and top plies are at their intended sides. We’ll
calculate, print and plot section properties, create a load case with combined external loads and plot its Nx and Nxy
internal loads in a single plot. Units for this problem are: m, N and Pa:

import abdbeam as ab

sc = ab.Section()
Create a materials dictionary:
mts = dict ()

(continues on next page)

1.3. Examples 9

Abdbeam Documentation, Release 0.2.1

(continued from previous page)

mts[1l] = ab.Laminate ()

mts[1l].ply_materials([l] = ab.PlyMaterial (0.0001, 148e9, 9.65e9, 4.55e9,
0.3)

mts[l].ply_materials[2] = ab.PlyMaterial (0.0002, 16.39%9e9, 16.39e9,
38.19e9, 0.801)

mts[1].plies = [[0,1]]%10 + [[45,1]1]1~*10

mts[1l].symmetry = 'T'

Create a points dictionary based on Y and Z point coordinates:

pts = dict()

pts[l] = ab.Point (-0.025, -0.035)

pts[2] = ab.Point (0.025, -0.035)

pts([3] = ab.Point (0.025, 0.035)

pts[4] = ab.Point (-0.025, 0.035)

Create a segments dictionary referencing point and material ids:
sgs = dict ()

[1] = ab.Segment (1,2,1)
sgs[2] = ab.Segment (2,3,1)
sgs[3] = ab.Segment (3,4,1)
sgs[4] = ab.Segment (4,1,1)
Point the dictionaries to the section
sc.materials = mts
sc.points = pts
sc.segments = sgs
Calculate and output section properties
sc.calculate_properties|()
sc.summary ()
ab.plot_section(sc, segment_coord=True, figsize=(6.4%x0.8, 4.8%0.8))
Create a single load case and calculate its internal loads
sc.loads[1l] = ab.Load(Px=200, Mz=10, Vz_s=-100)
sc.calculate_internal_loads ()
Plot internal loads
ab.plot_section_loads(sc, 1, int_load_list=['Nx', 'Nxy'],

title_list=['Abdbeam - Nx (N/m)',
'Abdbeam - Nxy (N/m) '], figsize=(6.4x0.8, 4.8%0.8))

r

Which prints:

Section Summary

Number of points: 4
Number of segments: 4
Number of cells: 1

Centroid

0.00000000e+00
0.00000000e+00

N
Q Q
o

0.00000000e+00
-6.93889390e-19

N
n »
([

(continues on next page)

10 Chapter 1. Contents

Abdbeam Documentation, Release 0.2.1

(continued from previous page)

.94941190e+04
.79757984e+04
.00000000e+00
.10520186e+03
.94941190e+04
.79757984e+04
-0.00000000e+00

NS O N

Centroid

3.99342118e+07
0.00000000e+00
0.00000000e+00
6.75301020e+04

.57576953e-08
.00000000e+00
.00000000e+00
.23711147e-07

SO O N

.00000000e+00
.94941190e+04
.00000000e+00
.00000000e+00

.00000000e+00
.39050642e-05
.00000000e+00
.00000000e+00

.00000000e+00
.00000000e+00
.79757984e+04
.00000000e+00

the Centroid

.00000000e+00
.00000000e+00
.56303524e-05
.00000000e+00

Matrix at the Origin

S O O o

N O O

.75301020e+04]
.00000000e+00]
.00000000e+00]

]

.10520186e+03]]

.23711147e-07]
.00000000e+00]
.00000000e+00]

]

.50563381e-04]]

[[3.99342118e+07 -0.00000000e+00 -0.00000000e+00 6.75301020e+04]
[0.00000000e+00 2.94941190e+04 0.00000000e+00 0.00000000e+00]
[0.00000000e+00 0.00000000e+00 1.79757984e+04 0.00000000e+00]
[6.75301020e+04 0.00000000e+00 0.00000000e+00 4.10520186e+03]]

[W] - Beam Compliance Matrix at the Origin

[[2.57576953e-08 0.00000000e+00 0.00000000e+00 -4.23711147e-07]
[0.00000000e+00 3.39050642e-05 0.00000000e+00 0.00000000e+00]
[0.00000000e+00 0.00000000e+00 5.56303524e-05 0.00000000e+00]
[-4.23711147e-07 0.00000000e+00 0.00000000e+00 2.50563381le-04]]

And plots:

1.3. Examples 11

Abdbeam Documentation, Release 0.2.1

0.03 A

0.02 1

0.01 4
& Centroid

0.00 J-——----——————1 _____+_ ----- » Shear Center -

i -—== | IPrinc. Axis
1 i
—0.01 4 ! ! 1
1 i I
1 : I
=002 4 ! H
i i
i ' '
—0.03 4 : i
——————— —————————
1
1 1 1 1 1
—0.04 —0.02 0.00 0.02 0.04
Abdbeam - Nx (Nfm) Abdbeam - Nxy (N/m)
3117 821
2660 657
2204 493
1747 329
1290 165
833 1
377 -163
—80 —327
-537 _ —491
994 —655
—1450 —-819

Back to Contents.

1.3.5 Bruhn’s Multi-celled Example

Most idealized solutions to aerospace beam problems assume that booms are connected to segments that can only
resist shear. Shear connectors can be used to achieve this, since they only use as inputs a material shear modulus and
its thickness.

Consider the cross section with 5 cells from Bruhn’s example A15.12 (ref®). Two important assumptions are made: the
cells segments (beam walls) can only resist shear and the points (beam flanges) develop all the bending resistance. As
stated above, in Abdbeam we can enforce these assumptions by modeling the segments with shear connector materials
and the section points with EA and/or GJ properties (booms). A Vz load of 10001bf is applied to the section and only
the shear flows (Nxy) at the segments and and shear center are of interest. Units for this problem are: in, 1bf and psi.

We'll start creating the section, calculating its properties and plotting its section. Notice that booms are represented
with additional circles around points:

3 Bruhn EF, Bollard RJ. Analysis and design of flight vehicle structures. Indianapolis: Jacobs Publishing; 1973 Jun.

12 Chapter 1. Contents

Abdbeam Documentation, Release 0.2.1

import abdbeam as ab

sc = ab.Section ()
Create a dictionary for the shear connector materials
mts = dict ()

-

w

fa
Il

)
ab.Point (20,10, 5e6,0,'c_")
ab.Point (30,10,5e6,0, 'd_")
)

)

—

S

i
Il

mts[1l] = ab.ShearConnector (0.03, 3846154)
mts[2] = ab.ShearConnector (0.04, 3846154)
mts[3] ab.ShearConnector (0.05, 3846154)
mts[4] = ab.ShearConnector (0.064, 3846154)
Create a points dictionary based on Y and Z point coordinates
pts = dict ()
pts[l] = ab.Point (0,0,2e7,0,"'a")
pts[2] = ab.Point (10,0,1e7,0, 'b")
pts[3] = ab.Point (20,0,5e6,0,'c")
pts[4] = ab.Point (30,0,5e6,0,'d")
pts[5] = ab.Point (40,0,5e6,0,'e")
pts[6] = ab.Point (50,0,1e7,0,"'f")
pts[11l] = ab.Point (0,10,2e7,0,"'a_")
pts[12] = ab.Point (10,10,1e7,0, 'b_"

[

[

[

15] = ab.Point (40,10,5e6,0,'e
pts[16] = ab.Point (50,10,1e7,0, "' "'

Create a segments dictionary referencing point and material ids
sgs = dict ()

sgs[l] = ab.Segment(1,2,2, 'Bottom 1")
sgs[2] = ab.Segment(2,3,2, 'Bottom 2")
sgs[3] = ab.Segment (3,4,2, 'Bottom 3")
sgs[4] = ab.Segment (4,5,1, 'Bottom 4")
sgs[5] = ab.Segment (5,6,1, 'Bottom 5")
sgs[ll] = ab.Segment (11,12,2, 'Top 1")
sgs[12] = ab.Segment (12,13,2, 'Top 2")
sgs[13] = ab.Segment (13,14,2, 'Top 3")
sgs[l4] = ab.Segment (14,15,1, 'Top 4")
sgs[15] = ab.Segment (15,16,1, 'Top 5")
sgs[21] = ab.Segment (1,11,4, 'Web 1")
sgs[22] = ab.Segment (2,12,3, 'Web 2")
sgs[23] = ab.Segment (3,13,2, 'Web 3")
sgs[24] = ab.Segment (4,14,2, 'Web 4")
sgs[25] = ab.Segment (5,15,1, '"Web 5")

sgs[26] = ab.Segment (6,16,1, 'Web 6")

Point the dictionaries to the section

sc.materials = mts

sc.points = pts

sc.segments = sgs

Calculate section properties

sc.calculate_properties ()

Plot the section

ab.plot_section(sc, centroid =False, princ_dir=False, thickness=False,
segment_coord=True, title='Abdbeam - Bruhn Example')

1.3. Examples 13

Abdbeam Documentation, Release 0.2.1

Abdbeam - Bruhn Example

25 % Shear Center

20 1

15 ~

10

=10 4

—15 4

0 10 20 30 40 S0

Next we’ll create the load case, calculate its internal loads and obtain the shear flows accessing the internal loads
Pandas dataframe sc.sgs_int_1ds_df directly. Since the segments develop no bending resistance, the shear
flow between adjacent points will be constant, and the average Nxy per segment is appropriate:

#Create load case and calculate its internal loads:
sc.loads[1l] = ab.Load(Vz_s=1000)
sc.calculate_internal_loads()

Print the shear flows Nxy for all segments

df = sc.sgs_int_1ds_df

print (df[[('Segment_TId', ""), ('Nxy','Avg')]])
Print the shear center location
print ('")
print ('Shear center is at y = '.format (sc.ys))
Which prints:

Segment_Id Nxy

Avg

0 1 2.878645
1 2 2.096924
2 3 0.210851
3 4 -1.253519
4 5 -2.586107
5 11 -2.878645
6 12 -2.096924
7 13 -0.210851
8 14 1.253519
9 15 2.586107
10 21 33.484992

(continues on next page)

14 Chapter 1. Contents

Abdbeam Documentation, Release 0.2.1

(continued from previous page)

11 22 18.963538
12 23 10.976982
13 24 10.555279
14 25 10.423497
15 26 15.595711

Shear center is at y = 1.93602680e+01

Back to Contents.

1.3.6 Torque-box Example

Shear connectors can also be used to model mechanical or bonded joints. This allows the representation of multiple
elements of a cross section by their mid-surfaces, usually at the price of creating additional small enclosed areas (cells)
between pairs of adjacent shear connector segments.

In this example, we create a torque-box using this modeling approach, which could be extended to complex cross
sections such as those found in wings, vertical stabilizers, horizontal stabilizers and others (to use aerospace examples).
Here we have a C-Section forward spar and a I-Section rear spar with rows of fasteners (shear connectors) connecting
them to top and bottom skins. Notice that this modeling approach added two additional closed cells near the rear spar
(see the Hat Stiffener Example for a more detailed discussion on the effects of such small closed cells in the section
torsional stiffness). Units for this problem are: in, Ibf and psi.

First we create the cross section, calculate is properties and plot it:

import abdbeam as ab

sc = ab.Section()
Create a dictionary to store ply materials shared by laminates
ply_mts = dict ()

ply_mts[l] = ab.PlyMaterial (0.0075, 1.149e7, 1.149e7, 6.6e5, 0.04)
Create the materials dictionary for the laminates and shear connector:
mts = dict ()

mts[1l] = ab.Laminate ()

mts[1l] .ply_materials[l] = ply_mts[1]

mts[1l].plies = [[45,1], [-45,111%2 + [[0,1]]1%3

mts[1l].symmetry = 'S’

mts[2] = ab.ShearConnector (0.25, 6381760)

Create a points dictionary based on Y and Z point coordinates:
pts = dict ()

pts[l] = ab.Point (1,-4)

pts[2] = ab.Point (2, -4)

pts[3] = ab.Point (12,-4)

pts[4] = ab.Point (14,-4)

pts([5] = ab.Point (15,-4)

pts[11] = ab.Point(1,1.21)

[
[
[
[
[
[
[
pts[13] = ab.Point (12,1.
[
[
[
[
[
[
[

pts[12] = ab.Point(2,1.21)
21)
pts[14] = ab.Point(14,1.21)
pts[15] = ab.Point (15,1.21)
pts([21] = ab.Point (1,-3.895)
pts[22] = ab.Point(2,-3.895)
pts[23] = ab.Point (3,-3.895)
pts([24] = ab.Point(3,1.105)
pts[25] = ab.Point(2,1.105)

(continues on next page)

1.3. Examples 15

Abdbeam Documentation, Release 0.2.1

(continued from previous page)

pts([26] = ab.Point(1,1.105)

[
pts[31] = ab.Point(11,-3.895)
pts[32] = ab.Point (12,-3.895)
pts[33] = ab.Point (13,-3.895)
pts[34] = ab.Point (14,-3.895)
pts[35] = ab.Point (15,-3.895)
pts[36] = ab.Point(11,1.105)
pts[37] = ab.Point(12,1.105)
pts[38] = ab.Point (13,1.105)
pts[39] = ab.Point (14,1.105)
pts[40] = ab.Point (15,1.105)

Create a segments dictionary referencing point and material ids:
sgs = dlct()

[

[

[

[

[

[

[

[

[

[

[

[

[25] = ab.Segment (25,26,1, 'Fwd Spar'
sgs[31] = ab.Segment (31,32,1, 'Rear Spar

[

[

[

[

[

[

[

[

[

[

[

[

[

sgs[l] = ab.Segment(1,2,1, 'Bottom Skin'")
sgs[2] = ab.Segment (2,3,1, 'Bottom Skin'")
sgs[3] = ab.Segment (3,4,1, 'Bottom Skin')
sgs[4] = ab.Segment (4,5,1, 'Bottom Skin'")
sgs[1l1l] = ab.Segment (11,12,1, '"Top Skin'")
sgs[l12] = ab.Segment (12,13,1, '"Top Skin'")
sgs[13] = ab.Segment (13,14,1, '"Top Skin'")
sgs[l14] = ab.Segment (14,15,1, "Top Skin'")
sgs[21] = ab.Segment (21,22,1, '"Fwd Spar')
sgs[22] = ab.Segment (22,23,1, 'Fwd Spar')
sgs[23] = ab.Segment (23,24,1, 'Fwd Spar')
sgs[24] =)

)

Al

sgs[32] = ab.Segment 32 33,1, 'Rear Spar'
sgs[33] = ab.Segment ,34,1, '"Rear Spar'
sgs[34] = ab.Segment 34 35,1, 'Rear Spar'
sgs[35] = ab.Segment

)
)
)
)
33,38,1, '"Rear Spar')
)
)
)
)

sgs[36] = ab.Segment (36,37,1, '"Rear Spar'
sgs[37] = ab.Segment (37,38,1, '"Rear Spar'
sgs[38] = ab.Segment (38,39,1, '"Rear Spar'
sgs[39] = ab.Segment (39,40,1, '"Rear Spar'
sgs[91] = ab.Segment (2,22,2, 'Connector’

0
w N
R
([l

ab.Segment (4,34,2, 'Connector'
941 = ab.Segment (25,12,2, 'Connector
95] = ab.Segment (37,13,2, 'Connector"')

sgs[96] = ab.Segment (39,14,2, 'Connector")

Point the dictionaries to the section

sc.materials = mts

sc.points = pts

sc.segments = sgs

Calculate section properties

sc.calculate_properties|()

Plot the section

ab.plot_section(sc, pt_size=2, title='Abdbeam - Torque-box Example',
figsize=(6.4x1.5, 4.8x1.5))

1

2

3

4,

(1

(

(

(

(

(

(
ab.Segment (24,25,1, '"Fwd Spar'

(

(

(

(3

(

(

(

(

(

(

()
ab.Segment (3, 32,2, 'Connector"')

()

(Al

(

16 Chapter 1. Contents

Abdbeam Documentation, Release 0.2.1

Abdbeam - Torque-box Example

® Centroid
* Shear Center
---— Princ. Axis

a 2 4 B g 10 12 14

Next we’re going to create 7 load cases with axial, bending, torque and shear loads integrated at the section origin.
Yp, zp, ys and zs are then all equal to the default zero and for this reason don’t need to be explicitly entered. Notice
that if Px_c were used instead of Px, the axial load would always be assumed to act on the centroid. By using a Px
though, a moment arm results from the load application point distance to the calculated centroid. Similarly, if Vy_s
and Vz_s were used instead of Vy and Vz, the shear loads would be assumed to always act at the shear center, creating
no additional torque in the section. The approach chosen for this example is the typical case for a torque box: loads
are integrated at a defined point in space and sizing proceeds changing centroid and shear center locations.

Create the load cases and calculate their internal loads:

Create load cases and calculate their internal loads

sc.loads[8] = ab.Load (Px=17085,My=-140914,Mz=-7208, Tx=1595,Vy=4727,Vz=-1661)
sc.loads[4] = ab.Load (Px=11854,My=-89211,Mz=-33716,Tx=-57488,Vy=5684,Vz=394)
sc.loads = ab.Load (Px=2395,My=-83206,Mz=210099, Tx=-43162,Vy=1316,Vz=407)
] = ab.Load(Px=-7458,My=-15571,Mz=-96370, Tx=-3615,Vy=564,Vz=-369)
= ab.Load (Px=1000,My=-30865,Mz=180498, Tx=11653,Vy=-7001,Vz=-189)

1
sc.loads[10
]
] = ab.Load (Px=-281,My=133314,Mz=-123966,Tx=324,Vy=9389,Vz=-1514)
1 (
t

[8

[4
[
[1
sc.loads[2
sc.loads[3
sc.loads[6] = ab.Load (Px=299,My=40658,Mz=101677,Tx=7102,Vy=9214,Vz=-3545)

la

sc.calcu e_internal_loads ()

Now let’s say we are analyzing the rear spar and would like to find the critical compressive Nx load among all cases,
identify its load case id and segment. Since the calculated internal loads are stored in the Pandas dataframe sc.
sgs_int_1ds_df, we can use Pandas methods to achieve this:

1.3. Examples 17

Abdbeam Documentation, Release 0.2.1

Use Pandas methods to get info on the critical spar compressive Nx
df = sc.sgs_int_1lds_df
spar_sgs = range (31,40)
df = df[df['Segment_Id'].isin(spar_sgs)]
idx = df[('Nx', 'Min')].idxmin ()
min_Nx = round(df.loc[idx, ('Nx', 'Min')],1)
min_sg = int(df.loc[idx, 'Segment_ Id'])
min_lc = int (df.loc[idx, 'Load_TId'])
print (('Minimum rear spar Nx is , from segment , load case !
) .format (min_Nx, min_sg, min_1lc))

Which prints:

Minimum rear spar Nx is -1935.9, from segment 34, load case 3

We can finish the example plotting the Nx from this critical load case. To do this, we’re going to filter the rear spar
from the rest of the cross section using the parameter plot_sgs and get the load case id from the variable min_1lc

defined on the previous code block:

Plot the critical compressive case Nx internal loads

ab.plot_section_loads(sc, min_lc, int_load_list=['Nx'],
title_list=['Critical Compressive Nx, LC '+
str(min_1c)], plot_sgs=range(31,40),
figsize=(6.4%x0.8, 4.8%0.8))

Critical Compressive Nx, LC 3 a5

=70
292
13

4 —265
1-544
4 —822

o —1100

—1379
—-1&57

—-1936

Back to Contents.

1.3.7 Hat Stiffener Example

In this example we create a hat stiffner and a skin, both represented at their laminates’ mid-planes. Abdbeam sections
cannot have floating segments and we want to capture the hat’s closed cell contribution to the section’s GJ, so we chose

18

Chapter 1. Contents

Abdbeam Documentation, Release 0.2.1

here to connect the hat plies to the bottom skin using ShearConnector materials. For these connector’s properties,
we entered a t and G that matches compliance term alpha66 (=1/(G*t)) of the skin laminate material. Notice that, by
also connecting the left and right outermost cap points, we added two other cells to the analysis. The areas of these
two cells are small and they only increase the total section GJ by 3% (compared to a section removing connectors 91
and 94). Connecting segments that are co-cured or bonded, on the other hand, tend to better represent the Nxy shear
distribution in complex sections. This example also shows multiple ways to define a stacking sequence using python
lists capabilities. Units for this problem are: in, 1bf and psi.

We'll start creating the section, calculating its properties and showing a summary of these properties:

import abdbeam as ab

sc = ab.Section()
Create a dictionary to store ply materials shared by laminates
ply_mts = dict ()

ply_mts[l] = ab.PlyMaterial (0.0075, 2.147e¢7, 1.4e6, 6.6e5, 0.3)
ply_mts[2] = ab.PlyMaterial (0.0075, 1.149e7, 1.149e7, 6.6e5, 0.04)
Create the materials dictionary for the laminates and shear connector:
mts dict ()

mts[1l] = ab.Laminate ()

mts[1l].ply_materials[2] = ply_mts[2]

mts[l].plies = [[45,2], [-45,2]] + [[0,2]]1+%3

mts[l].symmetry = 'S’

mts[2] = ab.Laminate ()

mts[2] .ply_materials[2] = ply_mts[2]

mts[2].plies = [[45,2], [-45,2]11+2 + [[0,2]]

mts[2] .symmetry = 'S’

mts[3] = ab.Laminate ()

mts[3] .ply_materials[l] = ply_mts[1]

mts[3].ply_materials[2] = ply_mts[2]

mts([3].plies = [[45,2], [-45,2]] + [[0,111%3 + [[0,2]]1 + [[O,1]11x2
mts[3].symmetry = 'SM'

mts[4] = ab.ShearConnector (0.075, 2605615)

Create a points dictionary based on Y and Z point coordinates:
pts = dict ()

pts[1l] = ab.Point (-2, 0)

pts([2] = ab.Point (-1, 0)

pts[3] = ab.Point (1, 0)

pts[4] = ab.Point (2, 0)

pts[5] = ab.Point (-2, 0.075)

pts[6] = ab.Point (-1, 0.075)

pts[7] = ab.Point (-0.35, 0.8)

pts[8] = ab.Point (0.35, 0.8)

pts[9] = ab.Point (1, 0.075)

pts[10] = ab.Point (2, 0.075)
Create a segments dictionary referencing point and material ids:
sgs = dict ()

sgs[l] = ab.Segment(1,2,1,'Skin_Left")
sgs[2] = ab.Segment(2,3, , 'Skin_Center')
sgs[3] = ab.Segment (3,4,1 ,'Skln Right'")
sgs[10] = ab.Segment (5,6,2, 'Hat_Left_ Foot")
sgs[1l1l] = ab.Segment (6,7,2, 'Hat_Left_Web')
sgs[1l2] = ab.Segment (7,8,3, "Hat_Top")
sgs[13] = ab.Segment (8,9,2, "Hat_Right_Web')
sgs[14] = ab.Segment (9,10,2, "Hat_Right_ Foot')
sgs[91] = ab.Segment (1,5,4, 'Connector_1")
sgs[92] = ab.Segment (2,6,4, 'Connector_1")
sgs[93] = ab.Segment (3, 9,4, 'Connector_1")

(continues on next page)

1.3. Examples 19

Abdbeam Documentation, Release 0.2.1

(continued from previous page)

sgs[94] = ab.Segment (4,10,4, 'Connector_1")
Point the dictionaries to the section
sc.materials = mts

sc.points = pts

sc.segments = sgs

Calculate section properties
sc.calculate_properties|()
sc.summary ()

Which prints:

Section Summary

Number of points: 10
Number of segments:
Number of cells: 3

12

Centroid
ycC = 0.00000000e+00
zZC = 2.51301984e-01

Shear Center

1.83880688e-16
= 4.13936823e-01

Replacement Stiffnesses

EA = 5.43010577e+06

Elyy = 6.22690978e+05

Elzz = 5.79683101e+06

Elyz = 7.27595761le-12

GJ = 2.71545365e+05

EImax = 5.79683101e+06

EImin = 6.22690978e+05

Angle = 8.05702321e-17

[P_c] - Beam Stiffness Matrix at the Centroid

[[5.43010577e+06 —-1.79003360e-10 -2.09160066e-27
[0.00000000e+00 6.22690978e+05 7.27595761le-12
[0.00000000e+00 -1.45519152e-11 5.79683101e+06
[0.00000000e+00 0.00000000e+00 0.00000000e+00

[W_c] - Beam Compliance Matrix at the Centroid

[[1.84158476e-07 5.29395592e-23 0.00000000e+00
[0.00000000e+00 1.60593302e-06 -2.01570488e-24
[0.00000000e+00 4.03140976e-24 1.72508048e-07
[0.00000000e+00 0.00000000e+00 0.00000000e+00

[P] - Beam Stiffness Matrix at the Origin

[[5.43010577e+06 1.
[1.36459635e+06 9.

65616750e+05

36459635e+06 —-3.21443370e-27
7.

27595761le-12

N O O O

w O O O

.00000000e+00]
.00000000e+00]
.00000000e+00]
.71545365e+05]

]

.00000000e+00]
.00000000e+00]
.00000000e+00]
.68262592e-06]

]

.00000000e+00]
.00000000e+00]

(continues on next page)

20

Chapter 1. Contents

Abdbeam Documentation, Release 0.2.1

(continued from previous page)

[1.36115257e-27 —-1.45519152e-11 5.79683101e+06 0.00000000e+00]
[0.00000000e+00 0.00000000e+00 0.00000000e+00 2.71545365e+05]]

[W] - Beam Compliance Matrix at the Origin

[[2.85577461e-07 -4.03574153e-07 5.06550636e-25 0.00000000e+00]
[-4.03574153e-07 1.60593302e-06 —-2.01570488e-24 0.00000000e+00]
[-1.01310127e-24 4.03140976e-24 1.72508048e-07 0.00000000e+00]
[0.00000000e+00 0.00000000e+00 0.00000000e+00 3.68262592e-06]]

Next, we’ll plot the section hiding segments 91 to 94 (the connectors), since we don’t care about their visual represen-
tation:

Plot the section

ab.plot_section(sc, filter_sgs=[91,92,93,94],
title='Abdbeam - Hat Example',
prop_color="#471365")

Abdbeam - Hat Example
2.0 - .

& Centroid
Shear Center

15 - ---- Princ. Axis

1.0 4

, EEEETTERT |

0.5

=

00 EVeYe]/m/m———

—0.5 1

—1.0 A1

-20 -15 -10 -05 0.0 0.5 1.0 15 2.0

Next, we’ll create two load cases and plot the first case (a rather unusual load case for a stiffener, for ilustration
purposes only). Notice that in this plot we listed only the cap segments to show results and continued to filter the
connectors:

Create load cases and calculate their internal loads
sc.loads[1l] = ab.Load (My=100, Vy_s=1000)

sc.loads[2] = ab.Load(Tx=100)
sc.calculate_internal_loads ()

Plot internal loads

ab.plot_section_loads(sc, 1, contour_color = 'viridis',

(continues on next page)

1.3. Examples 21

Abdbeam Documentation, Release 0.2.1

(continued from previous page)

result_sgs=[10,11,12,13,14],
figsize=(6.4%x0.8, 4.8%x0.8),
diagram_scale=0.5, filter_sgs=[91,92,93,94])

M Mxy
154.0 7119
137.6 194.7
1211 177.5
104.6 160.3
B8.1 143.1
1.6 125.9
£5.1 108.7
8.6 a1.5
2.1 74.3
56 57.1
-109 9.9

M 0.1884 My 12109 1 5552
0.1705 12155
0.1526 11758
0.1347 11361
0.1168 1.0965
0.0989 1.0568
0.0810 10171
0.0631 0.9774
0.0452 0.9378
0.0273 0.8981
0.0094 0.8584

Mxy le-99

Back to Contents.

22 Chapter 1. Contents

Abdbeam Documentation, Release 0.2.1

References

1.4 Theory

Abdbeam uses a thin-walled anisotropic composite beam theory that includes closed cells with open branches and
booms. For the detailed theory behind Abdbeam, Ref.! is the most complete reference. Ref” and Ref.? are also great
references on its originating theory.

1.4.1 Hypothesis and Limitations

¢ Prismatic thin-walled beams undergoing small deformations;
* Materials behave in a linearly elastic manner;

* Bernoulli-Navier hypothesis: originally plane cross sections of a beam undergoing bending remain plane and
perpendicular to the axis of the beam;

The effects of shear deformation and restrained warping are neglected.

1.4.2 Sign Conventions

The figure below show the sign conventions for the cross section axis, its normal force, bending moments, torque and
transverse shear forces:

z
MZC)/
shear VZ
center L1 i
v &7,
fan) [\
—— \-?\ y
N, M,
Ty
centroid K

Warning: The Mz sign convention used in Abdbeam requires special attention. As seen above, the sign of the
bending moments is that they are positive when they induce tension in the positive yz quadrant of the beam cross
section (as seen in Ref.! to Ref.*). In contrast, Finite Element Analysis software packages commonly adopt a right-
hand rule to define the tension and compression signs of a positive Mz bending moment. Remember to multiply
by -1 cross sectional Mz loads obtained from these sources.

! Victorazzo DS, De Jesus A. A Kollar and Pluzsik anisotropic composite beam theory for arbitrary multicelled cross sections. Journal of
Reinforced Plastics and Composites. 2016 Dec;35(23):1696-711.

2 Kollar LP, Springer GS. Mechanics of composite structures. Cambridge university press; 2003 Feb 17.

3 Kollar LP and Pluzsik A. Analysis of thin-walled composite beams with arbitrary layup. J Reinf Plast Compos 2002; 21: 1423-1465.

4 Megson TH. Aircraft structures for engineering students. Butterworth-Heinemann; 2016 Oct 17.

1.4. Theory 23

https://journals.sagepub.com/doi/abs/10.1177/0731684416665493
https://journals.sagepub.com/doi/abs/10.1177/0731684416665493
https://www.amazon.com/Mechanics-Composite-Structures-L%C3%A1szl%C3%B3-Koll%C3%A1r/dp/0521126908/ref=sr_1_1?ie=UTF8&qid=1544936929&sr=8-1&keywords=Mechanics+of+composite+structures
https://journals.sagepub.com/doi/abs/10.1177/0731684402021016928
https://www.amazon.com/Aircraft-Structures-Engineering-Students-Aerospace/dp/0080969054/ref=sr_1_1?ie=UTF8&qid=1548602525&sr=8-1&keywords=Megson+TH.+Aircraft+structures+for+engineering+students

Abdbeam Documentation, Release 0.2.1

References

1.5 Python API Reference

1.5.1 Submodules

e abdbeam.core module
e abdbeam.materials module

* abdbeam.plots module

abdbeam.core module

Module defining the classes Section, Segment, Point and Load.

Section Class

class abdbeam.core.Section
Class that defines a cross section, calculates its properties and internal loads.

materials
dict — Of the form {int : abdbeam.Material }

points
dict — Of the form {int : abdbeam.Point}

segments
dict — Of the form {int : abdbeam.Segment}

loads
dict — Of the form {int : abdbeam.L.oad}

cells
dict — An output of the form {int : abdbeam.Cell}

yc
float — The centroid Y coordinate.

zc
float — The centroid Z coordinate.

ys
float — The shear center Y coordinate.

zs
float — The shear center Z coordinate.

p_c
numpy.ndarray — The 4x4 section stiffness matrix relative to the centroid.

w_c
numpy.ndarray — The 4x4 section compliance matrix relative to the centroid.

P
numpy.ndarray — The 4x4 section stiffness matrix relative to the section origin.

24 Chapter 1. Contents

Abdbeam Documentation, Release 0.2.1

numpy.ndarray — The 4x4 section compliance matrix relative to the section origin.

weight
float — The section weight per unit length.

principal_axis_angle
float — The angle of the coordinate system Y’-Z’ relative to Y-Z in which the moment of Inertia Iy’z’ is
zero. Only applicable to isotropic beams.

sc_int_strains_df
pandas.DataFrame — The pandas dataframe containing the axial strain, the Y curvature, the Z curvature
and the rate of twist of the section relative to the centroid (to be implemented).

sgs_int_lds_df
pandas.DataFrame — A pandas dataframe containing the segments internal loads for all load cases in the
loads dictionary. Populated by the calculate_internal_loads method.

pts_int_1lds_df
pandas.DataFrame — A pandas dataframe containing the points internal loads for all load cases in the loads
dictionary. Populated by the calculate_internal_loads method.

summary ()
Prints a summary of the section properties.

calculate_properties ()
Calculates the section properties.

calculate_internal_ loads ()
Calculates internal loads for all load cases in the loads dictionary.

print_internal_loads ()
Prints to the console segment and point internal loads for all load cases in the loads dictionary.

Examples

Creating a 2-cells beam cross section comprised of asymmetric laminate segments (see appendix example in
reference theory paper):

import abdbeam as ab

sc = ab.Section ()

mts = dict ()

mts[1] = ab.Laminate ()

ply_mat = ab.PlyMaterial (0.166666, 148000, 9650, 4550, 0.3)
mts[1l].ply_materials[1l] = ply_mat

mts(1l].plies = [[O,1], [O,1], [O,11, [O,11, [O0,11, [O,111 + [[45,1]1]1~*6

]
mts[l].symmetry = 'T'
1

mts[1l].calculate_properties()
pts = dict ()

pts[l] = ab.Point (0, -35)
pts[2] = ab.Point (-50, -35)
pts[3] = ab.Point (-50, 35)
pts[4] = ab.Point (0, 35)
pts[5] = ab.Point (50, 35)
pts[6] = ab.Point (50, -35)
sgs = dict ()

sgs[l] = ab.Segment(1,2,1)

sgs[2] = ab.Segment (2,3,1)

(continues on next page)

1.5. Python API Reference 25

Abdbeam Documentation, Release 0.2.1

(continued from previous page)

sgs[3] = ab.Segment (3,4,1)
sgs[4] = ab.Segment (4,1,1)
sgs[5] = ab.Segment (4,5,1)
sgs[6] = ab.Segment (5,6,1)
sgs[7] = ab.Segment (6,1,1)
sc.materials = mts
sc.points = pts
sc.segments = sgs

sc.calculate_properties()
sc.summary ()

Adding two load cases to the section above and printing their internal loads:

Lds = dict ()

Lds[101] = ab.Load(1000.0,25000,-36000)
Lds[102] = ab.Load(Px=1500.0)

Lds[103] = ab.Load(Vz_s=1000.0)

sc.loads = Lds
sc.calculate_internal_loads()
sc.print_internal_loads ()

calculate_internal_ loads ()
Calculates internal loads for all load cases in the loads dictionary.

Results are loaded into two pandas dataframes: self.sgs_int_lds_df and self.pts_int_lds_df. Segment
loads are represented as quadratic equations by outputting the coefficients C2, C1 and CO, where Load
= C2*n**2 + C1*n + CO. “n” is the location in the segment length varying from 0.0 (point A) to 1.0 (point
B). Maximum and minimum segment values and their associated locations (0.0 - 1.0) inside the segment
are also provided, along with the segment average and total (integrated) load.

calculate_properties ()
Calculates the section properties.

print_internal_loads (break_columns=True)
Prints to the console segment and point internal loads for all load cases in the loads dictionary.

Warning: This method outputs a significant amount of data per load case and segment. Depending
on your number of segments and load cases, manipulate the data stored in self.sgs_int_lds_df and
self.pts_int_lds_df using pandas methods directly.

Parameters break_columns (bool, default True) — Of the form {int : abd-
beam.Material }

summary ()
Prints a summary of the section properties.

Segment Class

class abdbeam.core.Segment (point_a_id, point_b_id, material_id, description="")
Class that defines a section segment and calculates its properties.

point_a_id
int — The first point id of the segment.

26 Chapter 1. Contents

Abdbeam Documentation, Release 0.2.1

point_b_id
int — The second point id of the segment.

material_ id
int — The material id of the segment.

description
str — The segment description.

bk
float — The segment length.

float — The segment thickness (based on material data).

calculate_properties (points, materials)
Prints a summary of the section properties.

Examples

Creating 3 segments and associating them to a section.

import abdbeam as ab

sc = ab.Section()

sgs = dict ()

sgs[l] = ab.Segment(1,2,1)
sgs[2] = ab.Segment (2,3,1)
sgs[3] = ab.Segment (3,4,1)
sc.segments = sgs

calculate_properties (points, materials)
Calculates the segment properties.

This method is normally called by a Section object.
Parameters
e points (dict) — Of the form {int : abdbeam.Point}.

* materials (dict)— Of the form {int : abdbeam.Material }.

Point Class

class abdbeam.core.Point (y=0.0, z=0.0, EA=0.0, GJ=0.0, description="")
A cross section point in the section (Y,Z) coordinate system, optionally having an EA and GJ associated to it.

y
float — The Y location of the point.

float — The Z location of the point.

EA
float — The axial stiffness of the point.

GJ
float — The torsional stiffness of the point.

description
str — The point description.

1.5. Python API Reference 27

Abdbeam Documentation, Release 0.2.1

Examples

Create two points and associate them to a section:

import abdbeam as ab

sc = ab.Section()

pts = dict ()

pts[l] = ab.Point (0.5, 1.0, 10000000.0, 4500000.0, 'Stringer 105")
pts[2] = ab.Point (0.0, 0.0)

sc.points = pts

Load Class

class abdbeam.core.Load (Px_c=0.0, My=0.0, Mz=0.0, Tx=0.0, Vy_s=0.0, Vz_s=0.0, Px=0.0,

yp=0.0, zp=0.0, Vy=0.0, Vz=0.0, yv=0.0, zv=0.0)
A single section load case.
Px c
float — The axial load at the centroid of the cross section. Positive sign induces tension in the cross section.
My
float — The moment around the Y axis. Positive sign induces tension in the positive yz quadrant of the
beam cross section.

Mz
float — The moment around the Z axis. Positive sign induces tension in the positive yz quadrant of the
beam cross section.

Tx
float — The torque around the X axis. Positive sign is counterclockwise.

Vy_s
float — The shear force oriented with the Y axis at the shear center.

Vz_s
float — The shear force oriented with the section Z axis at the shear.

Px
float — The axial force located at (yp, zp). Positive sign induces tension in the cross section.

ypP
float — The Y axis location of the Px axial force.

zp
float — The Z axis location of the Px axial force.

Vy
float — The shear force oriented with the Y axis at zv.

float — The shear force oriented with the Z axis at yv.

yv
float — The Y axis location of the Vz shear force.

zv
float — The Z axis location of the Vy shear force.

Chapter 1. Contents

Abdbeam Documentation, Release 0.2.1

Examples

Creating 3 load cases and associating them to a section:

import abdbeam as ab

sc = ab.Section()

Lds = dict ()

Lds[101] = ab.Load (My=5€6)

Lds[102] ab.Load (Tx=250000, Vvz=5000.0)
Lds[103] ab.Load (0, 0, 0, 0, 0, 1000.0)
sc.loads = Lds

abdbeam.materials module

Contains all material classes used by Section objects.

Material Class

class abdbeam.materials.Material (¢, abd_c=<sphinx.ext.autodoc.importer._MockObject ob-

Jject>, description="")
Bases: object

Parent class for all materials.

May be instantiated directly but self.abd_c needs to be manually entered.

t
float — The thickness of the material. Since for this parent class the compliance matrix is provided directly,
the thickness is used for reference/plot purposes only.
abd_c
numpy.ndarray — The material 6x6 compliance matrix based on CLT (Classical Laminate Theory).
abd
numpy.ndarray — The material 6x6 stiffness matrix based on CLT (Classical Laminate Theory).
description

str — The description of the material.

calculate_properties ()
Method used by classes that inherit this base class to calculate the stiffness abd and compliance abd_c
matrices of the material based on the Classical Laminate Theory.

calculate_properties ()
Method used by classes that inherit this base class to calculate the stiffness abd and compliance abd_c
matrices of the material based on the Classical Laminate Theory.

For this parent class, abd_c needs to be manually provided.

Isotropic Class

class abdbeam.materials.Isotropic (t, E, v, description=")
Bases: abdbeam.materials.Material

An isotropic material that inherits the Material class.

1.5. Python API Reference 29

Abdbeam Documentation, Release 0.2.1

t

float — The thickness of the material.
E

float — The Young Modulus of the material.
v

float — The Poisson Ratio of the material.
description

str — The description of the material.
abd c

numpy.ndarray — The material 6x6 compliance matrix based on CLT (Classical Laminate Theory).
abd

numpy.ndarray — The material 6x6 stiffness matrix based on CLT (Classical Laminate Theory).

calculate_properties ()
Calculates the stiffness abd and compliance abd_c matrices of the isotropic material based on the Classical
Laminate Theory.

Examples

mts = dict ()
mts[1l] = ab.Isotropic(0.08, 10600000, 0.33)
mts[1l].calculate_properties|()

calculate_properties ()
Calculates the stiffness abd and compliance abd_c matrices of the isotropic material based on the Classical
Laminate Theory.

Laminate Class

class abdbeam.materials.Laminate
Bases: abdbeam.materials.Material

A composite laminate material that inherits the Materials class.

t
float — The laminate thickness. Calculated by the calculate_properties() method.

ply _materials
dict — Of the form {int : abdbeam.PlyMaterial }

plies
list — A list that defines the laminate stacking sequence. Plies are the elements of this list, which in turn
are represented as 2-elements lists of angle and material ids the form [float, int]. The first element in the
plies list is the bottom ply.

symmetry
(T, S, ‘SM’, ‘SMEAR’}, default = ‘T’ — ‘T’ means all plies are defined in the plies list; ‘S’ means
symmetry will be applied to the plies list; ‘SM’ means symmetry will be applied around the last item in
the plies list; ‘SMEAR’ means the effects of the plies stacking sequence will be ignored ([D]=t**2 /12 *

[A].

abd_c
numpy.ndarray — The material 6x6 compliance matrix based on CLT (Classical Laminate Theory).

30 Chapter 1. Contents

Abdbeam Documentation, Release 0.2.1

abd
numpy.ndarray — The material 6x6 stiffness matrix based on CLT (Classical Laminate Theory).

calculate_properties ()
Calculates the stiffness abd and compliance abd_c matrices of the laminate based on the Classical Laminate
Theory.

Examples

Creating a symmetric and balanced 8 plies laminate:

mts = dict ()

mts[1] = ab.Laminate ()

ply_mat = ab.PlyMaterial (0.166666, 148000, 9650, 4550, 0.3)
mts[1l].ply_materials[1l] = ply_mat

mts[1l].plies = [[45,1], [-45,11, 10,11, 190,111
mts[l].symmetry = 'S’

mts[1l].calculate_properties()

calculate_properties ()
Calculates the stiffness abd and compliance abd_c matrices of the laminate based on the Classical Laminate
Theory.

PlyMaterial Class

class abdbeam.materials.PlyMaterial (t, El, E2, GI2,v12, description="")
Bases: object

A ply material used by the Laminate class.

t
float — The ply thickness.

El
float — The axial stiffness of the ply.

E2
float — The transverse stiffness of the ply.

G12
float — The shear modulus of the ply.

description
str — The description of the ply.

Examples

ply_mat = ab.PlyMaterial (0.166666, 148000, 9650, 4550, 0.3)
mts[1l].ply_materials[1l] = ply_mat

Laminate Class

class abdbeam.materials.PlyMaterial (t, El, E2, GI2,v12, description="")
Bases: object

1.5. Python API Reference 31

Abdbeam Documentation, Release 0.2.1

A ply material used by the Laminate class.

t
float — The ply thickness.

El
float — The axial stiffness of the ply.

E2
float — The transverse stiffness of the ply.

G12
float — The shear modulus of the ply.

description
str — The description of the ply.

Examples

ply_mat = ab.PlyMaterial (0.166666, 148000, 9650, 4550, 0.3)
mts([1l].ply_materials[l] = ply_mat

Shear Connector Class

class abdbeam.materials.ShearConnector (¢, G, description=")

Bases: abdbeam.materials.Material
A shear connector that inherits the Material class.

Shear connectors have only the stiffness term A66 as nonzero and for this reason can only transfer shear loads.
Small values are added to other terms of the stiffness matrix to prevent a singular matrix. For this material, only
the compliance term a66 becomes an user input and is equal to 1/(G*t).

t
float — The thickness of the shear connector material.

float — The Shear Modulus of the shear connector material.

description
str — The description of the material.

abd c
numpy.ndarray — The material 6x6 compliance matrix based on CLT (Classical Laminate Theory).

abd
numpy.ndarray — The material 6x6 stiffness matrix based on CLT (Classical Laminate Theory).

calculate_properties ()
Calculates the stiffness abd and compliance abd_c matrices of the shear connector based on the Classical
Laminate Theory.

Examples

32

Chapter 1. Contents

Abdbeam Documentation, Release 0.2.1

mts = dict ()
mts[1] = ab.ShearConnector (0.075, 6380000, 'Shear-only Skin")
mts[1l].calculate_properties()

calculate_properties ()
Calculates the stiffness abd and compliance abd_c matrices of the shear connector based on the Classical
Laminate Theory.

abdbeam.plots module

Module containing methods to plot cross sections and their internal loads.

abdbeam.plots.plot_section (section, segment_coord=False, thickness=True, mid_plane=True,
top_bottom=False, centroid=True, shear_center=True, origin=True,
princ_dir=True, show_axis=True, prop_color="r’, pt_size=4, fil-
ter_sgs=[], plot_sgs=[], legend=True, title=", figsize=(6.4, 4.8),
dpi=380)
Uses matplolib to plot the section geometry and its properties (centroid, shear center and principal axis).

Note: Section properties need to be calculated using the method abdbeam.Section.calculate_properties() before
using this function.

Parameters
* section (abdbeam. Section)— The section object to be plotted.

* segment_coord (bool, default False) — If True, will plot the segments local
coordinate systems.

* thickness (bool, default True)-If True, will plot the segments thickness.

* mid_plane (bool, default True)- If True, will plot the segments mid-plane.

top_bottom(bool, default False)-If True and thickness is also True, will iden-
tify the bottom side of the material with the red color and the top side with the green color.

centroid (bool, default True) - If True, will plot the centroid location with an
‘0’ marker.

* shear_center (bool, default True)-If True, will plot the shear center location
with a ‘x” marker.

origin (bool, default True) - If True, will plot the section origin location with a
‘+’ marker.

* princ_dir (bool, default True)- If True, will plot the moment of inertia princi-
pal axes.

* show_axis (bool, default True)- If True, will show plot dimensions.

* prop_color (string, default 'r')-The matplotlibcolor name to be used when
plotting centroid, shear center and principal axes.

* pt_size (int, default 4) - The size in pixels of the marker. Booms (points with
EAs and GJs) will have 2 times this size.

e filter sgs (list, default [])- The list of segment ids that will not be plotted.
Of the form [int]. Will also respect the filter imposed by the plot_sgs parameter.

1.5. Python API Reference 33

Abdbeam Documentation, Release 0.2.1

* plot_sgs (list, default [])- The list containing the only segment ids that will
be plotted. Of the form [int]. If left empty will plot all segments. Will also respect the filter
imposed by the filter_sgs parameter.

* legend (bool, default True) - If True, will show a legend for the centroid, shear
center and principal axis.

* title(str, default '')-The title to be added at the top of the figure.

» figsize (tuple, default (6.4, 4.8)) — Width and height of the figure in
inches. Of the form (float, float).

* dpi (integer, default 80)— The resolution of the figure.

Examples

The example below creates a “C” section and plots it. The optional attribute prop_color is changed to purple
usinh the HTML color code #800080:

import abdbeam as ab

sc = ab.Section()

mts = dict ()

mts[1] = ab.Isotropic(0.08, 10600000, 0.33)

pts dict ()

pts[l] = ab.Point (0, -1.5)

pts[2] = ab.Point (-1, -1.5)
pts[3] = ab.Point (-1, 1.5)

pts[4] = ab.Point (0.5, 1.5)
sgs = dict ()

sgs[l] = ab.Segment(1,2,1)

sgs[2] = ab.Segment (2,3,1)

sgs[3] = ab.Segment (3,4,1)

sc.materials = mts

sc.points = pts

sc.segments = sgs
sc.calculate_properties|()
ab.plot_section(sc, prop_color='#800080")

abdbeam.plots.plot_section_loads (section, load_id, int_load_list=["Nx’, "Nxy’,
"Mx’, My, 'Mxy’], title_list=[], thickness=True,
pt_size=4, segment_contour=True, diagram=True,
diagram_contour=False, diagram_alpha=0.15, di-
agram_scale=1.0, diagram_factor_list=[], con-
tour_color="jet_r’, contour_levels=10, filter_sgs=[],
plot_sgs=[], no_result_sgs=[], result_sgs=[], figsize=(6.4,
4.8), dpi=80)

Uses matplotlib to plot the internal loads associated to a section and load case id.

Note: Internal loads need to be calculated using the method abdbeam.Section.calculate_internal_loads() before
using this function; If two or more internal loads are plotted, the plots will be presented in two columns; figure
sizes are for individual plots and not the entire figure.

Parameters

* section (abdbeam. Section)— The section object to be plotted.

34 Chapter 1. Contents

Abdbeam Documentation, Release 0.2.1

load_id (int)— The load case id key in the abdbeam.Section.loads dictionary.

int_load 1list (list, default ['Nx', 'Nxy', 'Mx', 'My', 'Mxy'])-
The internal load type list to be plotted for the selected load case.

title_list (list, default [])-— A list containing all the plot titles to be added.
An empty list (the default) will use the list int_load_list as titles. If the length of this list is
smaller than int_load_list’s length, None values will be assumed for the last items.

thickness (bool, default True)- If True, will plot the segments thickness.

pt_size (int, default 4)- The size in pixels of the marker. Booms (points with
EAs and GJs) will have 2 times this size.

segment_contour (bool, default True) — If True, will plot the internal load
contour inside a segment thickness.

diagram (bool, default True) - If True, will plot internal load diagrams at each
segment. Positive values are plotted towards the segment top side and negative towards the
bottom side.

diagram_contour (bool, default False) — If True, will replace the standard
gray diagram color, with each segments’ result contour.

diagram_alpha (float, default O0.15)- The diagram transparency alpha.

diagram_scale (float, default 1.0)— A scale factor to be applied to the dia-
gram plot. Negative values will reverse its plot direction. Does not affect the result values,
only the diagram plot.

diagram_factor_ list (list, default [])- A list containing factors to multi-
ply each segment’s diagram. An empty list (the default) is a list with factors=1. If the length
of this list is smaller than the number of segments, 1.0 values will be assumed for the last
items. The factors’ order is the same as the order in which the segments were entered in the
section segments dictionary.

contour_color (st, default 'jet_r')- The matplotlib’s colormap name to be
used in all contours.

contour_levels (int, default 10)- The number of contour level color areas to
be used.

filter_sgs (list, default [])- The list of segment ids that will not be plotted.
Of the form [int]. Will also respect the filter imposed by the plot_sgs parameter.

plot_sgs (1ist, default [])- The list containing the only segment ids that will
be plotted. Of the form [int]. If left empty will plot all segments. Will also respect the filter
imposed by the filter_sgs parameter.

no_result_sgs (list, default [])- The list of segment ids that will not have
results plotted. Of the form [int]. Will also respect the filter imposed by the result_sgs
parameter.

result_sgs (list, default []) — The list containing the only segment ids that
will have results plotted. Of the form [int]. If left empty will plot contours for all segments.
Will also respect the result_sgs.

figsize (tuple, default (6.4, 4.8))— Width and height of each internal load
in inches. Of the form (float, float). Note that this is not the size of the entire matplotlib
figure, but the size of each internal load plot.

dpi (integer, default 100)- The resolution of the figure.

1.5. Python API Reference

35

Abdbeam Documentation, Release 0.2.1

Examples

The example below creates a “C” section, creates load case id 100 with a vertical shear at the shear center of
150 and plots the ‘Nxy’ internal loads:

import abdbeam as ab

sc = ab.Section()

mts = dict ()

mts[1l] = ab.Isotropic(0.08, 10600000, 0.33)
pts = dict ()

pts[l] = ab.Point (0, -1.0)
pts[2] = ab.Point (-1, -1.0)
pts[3] = ab.Point (-1, 1.0)
pts[4] = ab.Point (0, 1.0)

sgs = dict ()

sgs[l] = ab.Segment(1,2,1)
sgs[2] = ab.Segment (2,3,1)
sgs[3] = ab.Segment (3,4,1)
sc.materials = mts

sc.points = pts

sc.segments = sgs
sc.calculate_properties|()

Lds = dict ()

Lds[100] = ab.Load(Vz_s=150)
sc.loads = Lds
sc.calculate_internal_loads ()
ab.plot_section_loads(sc, 100, int_load_list=['Nxy'])

1.6 License

BSD 3-Clause License
Copyright (c) 2018-2019, Danilo Seixas Victorazzo All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

 Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

 Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the follow-
ing disclaimer in the documentation and/or other materials provided with the distribution.

* Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGE.

36 Chapter 1. Contents

CHAPTER 2

Source Code

The source code is hosted on GitHub at https://github.com/victorazzo/abdbeam.

37

https://github.com/victorazzo/abdbeam

Abdbeam Documentation, Release 0.2.1

38 Chapter 2. Source Code

CHAPTER 3

Quick Example

Let’s use Abdbeam to analyze the cross section with two closed cells below (from?):

Z
by =by =50mm | bs=b; =50mm _
|
SIS
g centroid . t=2mm
= \ e
I
= i) hl
Il N y
e Y
= beam center
IL layup (typ.):
= [0°6/45%]
!

Start creating the section materials, its points and segments (we’ll also calculate the section properties and request a
summary at the end):

import abdbeam as ab

sc = ab.Section()

Create a materials dictionary:

mts = dict ()

mts[1l] = ab.Laminate ()

ply_mat = ab.PlyMaterial (0.166666, 148000, 9650, 4550, 0.3)
mts[1l].ply_materials[1l] = ply_mat

mts[1l].plies = [[0,1]11*6 + [[45,11]1%6

(continues on next page)

2 Victorazzo DS, De Jesus A. A Kolldr and Pluzsik anisotropic composite beam theory for arbitrary multicelled cross sections. Journal of
Reinforced Plastics and Composites. 2016 Dec;35(23):1696-711.

39

https://journals.sagepub.com/doi/abs/10.1177/0731684416665493
https://journals.sagepub.com/doi/abs/10.1177/0731684416665493

Abdbeam Documentation, Release 0.2.1

(continued from previous page)

Create a points dictionary based on Y and Z point coordinates:

pts = dict ()

pts[l] = ab.Point (0, -35)
pts[2] = ab.Point (-50, -35)
pts[3] = ab.Point (-50, 35)
pts[4] = ab.Point (0, 35)
pts[5] = ab.Point (50, 35)
pts[6] = ab.Point (50, -35)

Create a segments dictionary referencing point and material ids:
sgs = dict ()

sgs[l] = ab.Segment(1,2,1)
sgs[2] = ab.Segment (2,3,1)
sgs[3] = ab.Segment (3,4,1)
sgs[4] = ab.Segment (4,1,1)
sgs[5] = ab.Segment (4,5,1)
sgs[6] = ab.Segment (5,6,1)
sgs[7] = ab.Segment (6,1,1)

Point the dictionaries to the section
sc.materials = mts

sc.points = pts

sc.segments = sgs

Calculate and output section properties
sc.calculate_properties ()

sc.summary ()

Which prints:

Section Summary

Number of points: 6
Number of segments: 7
Number of cells: 2

Centroid
yC = -2.67780636e-01
zC = 0.00000000e+00

Shear Center

= 2.35301214e-03
-1.4575804%e-03

N
n ©
([

Replacement Stiffnesses

EA = 6.80329523e+07
Elyy = 5.24834340e+10
Elzz = 8.36408748e+10
Elyz = 0.00000000e+00
GJ = 1.23762317e+10
EImax = 8.36408748e+10
EImin = 5.24834340e+10
Angle = 0.00000000e+00
[P_c] - Beam Stiffness Matrix at the Centroid

(continues on next page)

40 Chapter 3. Quick Example

Abdbeam Documentation, Release 0.2.1

(continued from previous page)

- Beam Stiffness

.80329523e+07
.00000000e+00
.79715871e+07
.43701515e+08

.50691722e-08
.00000000e+00
.20155371e-12
.74965018e-10

o O N

.46320132e+05
.00000000e+00
.36408748e+10
.12142163e+07

.00000000e+00

.00000000e+00

0
5.24834340e+10
0
0

.00000000e+00

the Centroid

.66286490e-28
.00000000e+00
.19558821e-11
.04936911e-14

.80329523e+07 0.00000000e+00
.00000000e+00 5.24834340e+10
.46320132e+05 0.00000000e+00
.43701515e+08 0.00000000e+00
] - Beam Compliance Matrix at
.50683149e-08 0.00000000e+00 1
.00000000e+00 1.90536313e-11 0
.57282135e-25 0.00000000e+00 1
.74959530e-10 0.00000000e+00 2

Matrix at the Origin
.79715871e+07
.00000000e+00
.36456213e+10
.72662667e+07

.00000000e+00
.90536313e-11
.00000000e+00
.00000000e+00

.20155371e-12
.00000000e+00
.19558821e-11
.04936911e-14

0 N O

0 N O

-1.]
0.00000000e+00]
-2.12142163e+07]
1.23762317e+10]

43701515e+08

]

.74959530e-10]
.00000000e+00]
.04936911e-14]
.28315446e-11]

]

.43701515e+08]
0.00000000e+00]
1.72662667e+07]

]

1.23762317e+10]]

.74965018e-10]
.00000000e+00]
.04936911e-14]
.28315446e-11]

]

Now let’s create two load cases (101 and 102) and calculate their internal loads:

SC.
SC.
sC
SC.

loads =
loads[101] =
.loads[102] =

dict ()

ab.Load (My=5e6)
ab.Load (Tx=250000,
calculate_internal_loads ()

vz=5000.0)

Next print all internal loads (which outputs a lot of data we’ll not show here):

’sc.print_internal_loads()

Or access the Pandas dataframe containing these internal loads directly:

e

sc.sgs_int_1lds_df

Next plot the cross section and its properties (we’ll show the segment orientations, hide legends, change the centroid,
shear center and principal axis colors and use a custom figure size):

ab.plot_section(sc,
legend=False,

segment_coord=True,

title='Abdbeam - Example',
prop_color="'#471365",

figsize=(5.12,

3.84))

41

Abdbeam Documentation, Release 0.2.1

Abdbeamn - Example

40 4

20 1

—20 4

=40 4

T T T
—&0 —40 =20

Finally, plot Nx and Nxy for load case 101 (we’ll change the matplotlib contour palette, reduce the internal load
diagram scale, and use a custom figure size):

ab.plot_section_loads(sc, 101, contour_color='viridis', diagram_scale=0.7,
int_load_list=['Nx', 'Nxy'], figsize=(5.12, 3.84))

M Nxy 1e-99

42 Chapter 3. Quick Example

CHAPTER 4

Indices and tables

* genindex
* modindex

e search

43

Abdbeam Documentation, Release 0.2.1

44 Chapter 4. Indices and tables

Python Module Index

a

abdbeam.core, 24
abdbeam.materials, 29
abdbeam.plots, 33

45

Abdbeam Documentation, Release 0.2.1

46 Python Module Index

Index

A

abd (abdbeam.materials.Isotropic attribute), 30

abd (abdbeam.materials.Laminate attribute), 30

abd (abdbeam.materials.Material attribute), 29

abd (abdbeam.materials.ShearConnector attribute), 32
abd_c (abdbeam.materials.Isotropic attribute), 30
abd_c (abdbeam.materials.Laminate attribute), 30
abd_c (abdbeam.materials.Material attribute), 29
abd_c (abdbeam.materials.ShearConnector attribute), 32
abdbeam.core (module), 24

abdbeam.materials (module), 29

abdbeam.plots (module), 33

B

bk (abdbeam.core.Segment attribute), 27

C

calculate_internal_loads()
method), 25, 26
calculate_properties() (abdbeam.core.Section method),

(abdbeam.core.Section

25,26

calculate_properties() (abdbeam.core.Segment method),
27

calculate_properties() (abdbeam.materials.Isotropic
method), 30

calculate_properties() (abdbeam.materials.Laminate
method), 31

calculate_properties() (abdbeam.materials.Material
method), 29

calculate_properties() (abd-
beam.materials.ShearConnector method),

32,33
cells (abdbeam.core.Section attribute), 24

D

description (abdbeam.core.Point attribute), 27
description (abdbeam.core.Segment attribute), 27
description (abdbeam.materials.Isotropic attribute), 30
description (abdbeam.materials.Material attribute), 29

description (abdbeam.materials.PlyMaterial
31,32

description (abdbeam.materials.ShearConnector at-
tribute), 32

attribute),

E

E (abdbeam.materials.Isotropic attribute), 30

E1 (abdbeam.materials.PlyMaterial attribute), 31, 32
E2 (abdbeam.materials.PlyMaterial attribute), 31, 32
EA (abdbeam.core.Point attribute), 27

G

G (abdbeam.materials.ShearConnector attribute), 32
G12 (abdbeam.materials.PlyMaterial attribute), 31, 32
GJ (abdbeam.core.Point attribute), 27

Isotropic (class in abdbeam.materials), 29

L

Laminate (class in abdbeam.materials), 30
Load (class in abdbeam.core), 28
loads (abdbeam.core.Section attribute), 24

M

Material (class in abdbeam.materials), 29
material_id (abdbeam.core.Segment attribute), 27
materials (abdbeam.core.Section attribute), 24
My (abdbeam.core.Load attribute), 28

Mz (abdbeam.core.Load attribute), 28

P

p (abdbeam.core.Section attribute), 24

p_c (abdbeam.core.Section attribute), 24

plies (abdbeam.materials.Laminate attribute), 30
plot_section() (in module abdbeam.plots), 33
plot_section_loads() (in module abdbeam.plots), 34
ply_materials (abdbeam.materials.Laminate attribute), 30
PlyMaterial (class in abdbeam.materials), 31

47

Abdbeam Documentation, Release 0.2.1

Point (class in abdbeam.core), 27 zs (abdbeam.core.Section attribute), 24
point_a_id (abdbeam.core.Segment attribute), 26 zv (abdbeam.core.Load attribute), 28
point_b_id (abdbeam.core.Segment attribute), 26
points (abdbeam.core.Section attribute), 24
principal_axis_angle (abdbeam.core.Section attribute), 25
print_internal_loads() (abdbeam.core.Section method),
25,26
pts_int_Ids_df (abdbeam.core.Section attribute), 25
Px (abdbeam.core.Load attribute), 28
Px_c (abdbeam.core.Load attribute), 28

S

sc_int_strains_df (abdbeam.core.Section attribute), 25
Section (class in abdbeam.core), 24

Segment (class in abdbeam.core), 26

segments (abdbeam.core.Section attribute), 24
sgs_int_lds_df (abdbeam.core.Section attribute), 25
ShearConnector (class in abdbeam.materials), 32
summary() (abdbeam.core.Section method), 25, 26
symmetry (abdbeam.materials.Laminate attribute), 30

T

t (abdbeam.core.Segment attribute), 27

t (abdbeam.materials.Isotropic attribute), 29

t (abdbeam.materials.Laminate attribute), 30

t (abdbeam.materials.Material attribute), 29

t (abdbeam.materials.PlyMaterial attribute), 31, 32
t (abdbeam.materials.ShearConnector attribute), 32
Tx (abdbeam.core.Load attribute), 28

\Y

v (abdbeam.materials.Isotropic attribute), 30
Vy (abdbeam.core.Load attribute), 28

Vy_s (abdbeam.core.Load attribute), 28

Vz (abdbeam.core.Load attribute), 28

Vz_s (abdbeam.core.Load attribute), 28

W

w (abdbeam.core.Section attribute), 24
w_c (abdbeam.core.Section attribute), 24
weight (abdbeam.core.Section attribute), 25

Y

y (abdbeam.core.Point attribute), 27

yc (abdbeam.core.Section attribute), 24
yp (abdbeam.core.Load attribute), 28
ys (abdbeam.core.Section attribute), 24
yv (abdbeam.core.Load attribute), 28

Z

z (abdbeam.core.Point attribute), 27
zc¢ (abdbeam.core.Section attribute), 24
zp (abdbeam.core.Load attribute), 28

48

Index

	Contents
	Source Code
	Quick Example
	Indices and tables
	Python Module Index

